No abstract
No abstract
This article investigates the relationship between the holographic principle and the laws of thermodynamics in explaining the late-time acceleration of the universe. First, we explore the possibilities of generating the standard holographic dark energy (SHDE) from the laws of horizon thermodynamics. Except for entropies that follow an exponent stretched area law, unless we redefine the horizon temperature, we found it challenging to construct a one-to-one correspondence between the dark energies defined by the holographic principle and the laws of thermodynamics. Secondly, in SHDE models, unless we invoke some phenomenological interactions, it is impossible to explain the late-time cosmic acceleration with the Hubble horizon as the IR cutoff. On the other hand, it is possible to induce dark energy as an integration constant using the laws of thermodynamics on the Hubble horizon. These motivated us to explore a feasible way to invoke the holographic principle from the laws of horizon thermodynamics. We show that the additional terms that appear in the modified Friedmann equations on using entropies other than the Bekenstein-Hawking entropy in the first law of thermodynamics can behave like a dynamic holographic dark energy (HDE). We study the features of such an HDE with Rényi entropy as the choice without considering any non-standard interactions. Interestingly, the resulting form of dark energy reduces to the standard cosmological constant when Rényi entropy reduces to the Bekenstein-Hawking entropy. By examining different parameters, we affirm the validity of our approach to dark energy, which respects both holographic principle and thermodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.