Most of the people all over the world pass away from complications related to lung cancer every single day. It is a deadly form of the disease. To improve a person’s chances of survival, an early diagnosis is a necessary prerequisite. In this regard, the existing methods of tumour detection, such as CT scans, are most commonly used to recognize infected regions. Despite this, there are certain obstacles presented by CT imaging, so this paper proposes a novel model which is a correlation-based model designed for analysis of lung cancer. When registering pictures of thoracic and abdominal organs with slider motion, the total variation regularization term may correct the border discontinuous displacement field, but it cannot maintain the local characteristics of the image and loses the registration accuracy. The thin-plate spline energy operator and the total variation operator are spatially weighted via the spatial position weight of the pixel points to construct an adaptive thin-plate spline total variation regular term for lung image CT single-mode registration and CT/PET dual-mode registration. The regular term is then combined with the CRMI similarity measure and the L-BFGS optimization approach to create a nonrigid registration procedure. The proposed method assures the smoothness of interior of the picture while ensuring the discontinuous motion of the border and has greater registration accuracy, according to the experimental findings on the DIR-Lab 4D-CT public dataset and the CT/PET clinical dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.