Thermal decomposition of propargyl alcohol (C3H3OH), a molecule of interest in interstellar chemistry and combustion, was investigated using a single pulse shock tube in the temperature ranging from 953 to 1262 K. The products identified include acetylene, propyne, vinylacetylene, propynal, propenal, and benzene. The experimentally observed overall rate constant for thermal decomposition of propargyl alcohol was found to be k = 10((10.17 ± 0.36)) exp(-(39.70 ± 1.83)/RT) s(-1). Ab initio theoretical calculations were carried out to understand the potential energy surfaces involved in the primary and secondary steps of propargyl alcohol thermal decomposition. Transition state theory was used to predict the rate constants, which were then used and refined in a kinetic simulation of the product profile. The first step in the decomposition is C-O bond dissociation, leading to the formation of two important radicals in combustion, OH and propargyl. This has been used to study the reverse OH + propargyl radical reaction, about which there appears to be no prior work. Depending on the site of attack, this reaction leads to propargyl alcohol or propenal, one of the major products at temperatures below 1200 K. A detailed mechanism has been derived to explain all the observed products.
Thermal decomposition studies of 3-carene, a bio-fuel, have been carried out behind the reflected shock wave in a single pulse shock tube for temperature ranging from 920 K to 1220 K. The observed products in thermal decomposition of 3-carene are acetylene, allene, butadiene, isoprene, cyclopentadiene, hexatriene, benzene, toluene and p-xylene. The overall rate constant for 3-carene decomposition was found to be k/s −1 = 10 (9.95 ± 0.54) exp(−40.88 ± 2.71 kcal mol −1 /RT). Ab-initio theoretical calculations were carried out to find the minimum energy pathway that could explain the formation of the observed products in the thermal decomposition experiments. These calculations were carried out at B3LYP/6-311+G(d,p) and G3 level of theories. A kinetic mechanism explaining the observed products in the thermal decomposition experiments has been derived. It is concluded that the linear hydrocarbons are the primary products in the pyrolysis of 3-carene.
The two complexes containing bioactive ligands of the type and [Fe(L)] (PF(6))(2) (1) (where L = [1-{[2-{[2-hydroxynaphthalen-1-yl)methylidine]amino}phenyl)imino] methyl}naphthalene-2-ol]) and [Co(L(1)L(2))] (PF(6))(3) (2) (where L(1)L(2) = mixed ligand of 2-seleno-4-methylquinoline and 1,10-phenanthroline in the ratio 1:2, respectively) were synthesized and structurally characterized. The DNA binding property of the complexes with calf thymus DNA has been investigated using absorption spectra, viscosity measurements, and thermal denaturation experiments. Intrinsic binding constant K(b) has been estimated at room temperature. The absorption spectral studies indicate that the complexes intercalate between the base pairs of the CT-DNA tightly with intrinsic DNA binding constant of 2.8 × 10(5) M(-1) for (1) and 4.8 × 10(5) M(-1) for (2) in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.2, respectively. The oxidative cleavage activity of (1) and (2) were studied by using gel electrophoresis and the results show that complexes have potent nuclease activity.
A new series of N,N'-(benzene-1,3-diyldi-1,3,4-oxadiazole-5,2-diyl)bis{2-[(5-benzene-1,3-diyl-1,3,4-oxadiazol-2-yl)amino]acetamide}(macrocycle 1), N,N'-(benzene-1,3-diyldi-1,3,4-thiadiazole-5,2-diyl)bis{2-[(5-benzene-1,3-diyl-1,3,4-thiadiazol-2-yl)amino]acetamide} (macrocycle 2) and S,S'-[benzene-1,3-diylbis(4H-1,2,4-triazole-5,3-diyl)]bis{[(5-benzene-1,3-diyl-4H-1,2,4-triazol-3-yl)sulfanyl]ethanethioate}(macrocycle 3) was synthesized from isophthalic dihydrazide (4) through a multistep reaction sequence. All the synthesized compounds were screened for their inhibitory effect against four different bacterial strains: P. aeruginosa ATCC-20852, K. pneumoniae MTCC-618, S. aureus ATCC- 29737, S. typhi MTCC- 3214. The synthesized compounds showed a significant zone of inhibition and the results were comparable with that of the standard drug ciprofloxacin. The synthesized compounds were further studied for their possible in vitro antioxidant effects by DPPH scavenging, total antioxidant capacity, total reductive capacity and H(2) O(2) scavenging activity. The results indicated that the in vitro antioxidant activity for all the three molecules was efficient when compared to the standards. The DNA interaction behavior of macrocycles 1-3 with CT-DNA was investigated by the absorption spectra obtained (K(b) constant for 1 is 4.53 × 10(4) M(-1) , for 2 is 5.75 × 10(4) M(-1) and for 3 is 5.86 × 10(4) M(-1) ). Based on the results it can be interpreted that the reducing power effect of the newly synthesized compounds demonstrates a direct effect on DNA binding and hence inhibiting the bacterial growth through their action on DNA by inhibiting DNA replication or DNA transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.