In this study, metal foam heat sinks (MFHS) are proposed for thermal management of electronic devices. Metal foams are excellent candidates for improving the heat transfer performance of heat sinks due to their unique characteristics such as the large surface area to volume ratio and their complex form, which favors mixing and convection. Numerical investigations of the transient thermal-hydraulic behavior and performance of the cooling process of electronic devices by MFHS are carried out. The physical model consists of a convective laminar air flow inside a channel equipped with multiple power electronic devices cooled by MFHS. MFHS consist of three plate fin heat sinks which are made of aluminum foam with a porosity of 0.95 and a permeability of 1.65 10 -7 m 2 , and the heat sink base is made of aluminum solid. Comsol software is used to solve the governing equations. Numerical results reveal that the thermal performance of MFHS is larger than that of a conventional heat sink and a clear channel under the same operating conditions, and the thermal behavior of electronic devices cooled by MFHS is stable and maintained at admissible temperatures. The validation of the numerical results shows perfect agreement with the experimental data with a maximum relative error of 3 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.