The degradation of troponin (Tn) subunits by calpain was studied by incubating either isolated cardiac Tns or myocardial cryosections with two different calpain isoenzymes isolated from rat skeletal muscle. Western-blot analysis with monoclonal antibodies against TnI and TnT showed that mu-calpain was at least ten times more active than m-calpain in degrading TnI and TnT both in vitro and in situ. TnC was completely resistant to both proteinase forms. Phosphorylation by cyclic AMP-dependent protein kinase (PKA) isolated from rat skeletal muscle reduced the sensitivity of TnI to degradation. This effect in combination with an increased efficiency of the endogenous inhibitor [Salamino, De Tullio, Michetti, Mengotti, Melloni and Pontremoli (1994) Biochem. Biophys. Res. Commun. 199, 1326-1332] probably reduces the proteolytic activity of calpain in cells on PKA stimulation. Conversely, phosphorylation by protein kinase C (PKC) resulted in a twofold increase in the degradation of TnI. Degradation by m-calpain was not modified by Tn phosphorylation. The different sensitivity to mu-calpain might be related to changes in TnI oligomeric structure. Indeed, on PKC phosphorylation, the apparent molecular mass of TnI calculated from the distribution coefficient of Tn complex in Sephadex G-100 matrix was reduced from 90 to 30 kDa suggesting dissociation of the Tn complex.
A double-blind, cross-over study was designed to evaluate the effects of L-carnitine in patients with peripheral vascular disease. After drug washout, 20 patients were randomly assigned to receive placebo or L-carnitine (2 g bid, orally) for a period of 3 weeks and were then crossed over to the other treatment for an additional 3 weeks. The effect on walking distance at the end of each treatment period was measured by treadmill test. Absolute walking distance rose from 174 + 63 m with placebo to 306 122 m (p < .01) with carnitine. Biopsy of the ischemic muscle, carried out before and after 15 days of L-carnitine administration in four additional patients, showed that treatment significantly increased total carnitine levels. An additional goal of this study was to ascertain the elfects of L-carnitine on the metabolic changes induced by exercise in the affected limb. In six patients under control conditions, arterial and popliteal venous lactate and pyruvate concentrations were determined at rest, when the maximal walking distance was reached, and 5 min after the walking test. Twenty-four hours later, L-carnitine was administered intravenously (3 g as a bolus followed by an infusion of 2 mg/kg/min for 30 min) and metabolic assessments were repeated. Five minutes after the walking test, popliteal venous lactate concentration increased by 107 + 16% before treatment and by only 54 + 32% (p < .01) after carnitine. Furthermore, carnitine induced a more rapid recovery to the resting value of the lactate/pyruvate ratio. These data suggest that carnitine improves pyruvate utilization and oxidative phosphorylation efficiency in the skeletal muscle of the ischemic leg. L-Carnitine, administered intravenously to 18 patients at the same dosage as above, did not modify blood flow or the ankle/arm systolic blood pressure ratio. In an additional eight patients, this intravenous dose produced an increase in walking distance similar to that observed with oral treatment. In conclusion, this study demonstrates that L-carnitine, although not affecting the general or regional hemodynamics, improves the walking capacity of patients with intermittent claudication, probably through a metabolic mechanism. Circulation 77, No. 4, 767-773, 1988. THE MOST IMPORTANT problem in the treatment of obstructive vascular disease is to make the energy supply adequate to the metabolic demand in the hypoxic area. In peripheral vascular disease, this goal is sought only by interventions aimed at increasing blood flow to the ischemic muscle. Many reports on ischemic heart-disease, however, suggest that a metabolic agent such as carnitine (3-hydroxy-4N-trimethylaminobutyrate) may protect the ischemic myocardium' and improve the stress tolerance of the heart2-4 by increasFrom the
The effects of L-carnitine administration on maximal exercise capacity were studied in a double-blind, cross-over trial on ten moderately trained young men. A quantity of 2 g of L-carnitine or a placebo were administered orally in random order to these subjects 1 h before they began exercise on a cycle ergometer. Exercise intensity was increased by 50-W increments every 3 min until they became exhausted. After 72-h recovery, the same exercise regime was repeated but this time the subjects, who had previously received L-carnitine, were now given the placebo and vice versa. The results showed that at the maximal exercise intensity, treatment with L-carnitine significantly increased both maximal oxygen uptake, and power output. Moreover, at similar exercise intensities in the L-carnitine trial oxygen uptake, carbon dioxide production, pulmonary ventilation and plasma lactate were reduced. It is concluded that under these experimental conditions pretreatment with L-carnitine favoured aerobic processes resulting in a more efficient performance. Possible mechanisms producing this effect are discussed.
Propionyl-CoA is formed principally during amino acid catabolism. It is then converted chiefly to succinate in a described three-step sequence. Free propionate is formed from propionyl-CoA to a very limited extent, but this anion can participate in a futile cycle of activation and hydrolysis, which can significantly deplete mitochondrial ATP. Free CoA and propionyl-CoA cannot enter or leave mitochondria, but propionyl groups are transferred between separate CoA pools by prior conversion to propionyl-L-carnitine. This reaction requires carnitine and carnitine acetyl transferase, an enzyme abundant in heart tissue. Propionyl-L-carnitine traverses both mitochondrial and cell membranes. Within the cell, this mobility helps to maintain the mitochondrial acyl-CoA/CoA ratio. When this ratio is increased, as in carnitine deficiency states, deleterious consequences ensue, which include deficient metabolism of fatty acids and urea synthesis. From outside the cell (in blood plasma), propionyl-L-carnitine can either be excreted in the urine or redistributed by entering other tissues. This process apparently occurs-without prior hydrolysis and reformation. It is suggested that heart tissue utilizes such exogenous propionyl-L-carnitine to stimulate the tricarboxylic acid cycle (via succinate synthesis) and that this may explain its known protective effect against ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.