The SALTMED model is one of the few available generic models that can be used to simulate crop growth with an integrated approach that accounts for water, crop, soil, and field management. It is a physically based model using the well-known water and solute transport, evapotranspiration, and water uptake equations. In this paper, the model simulated chickpea growth under different irrigation regimes and a Mediterranean climate. Five different chickpea varieties were studied under irrigation regimes ranging from rainfed to 100 % crop water requirements, in a dry and a wet year. The calibration of the model using one of the chickpea varieties was sufficient for simulating the other varieties, not requiring a specific calibration for each individual chickpea variety. The results of calibration and validation of the SALTMED model showed that the model can simulate very accurately soil moisture content, grain yield, and total dry biomass of different chickpea varieties, in both wet and dry years. This new version of the SALTMED model (v. 3.02.09) has more features and possibilities than the previous versions, providing academics and professionals with a very good tool to manage water, soil, and crops.
Extensive livestock is a basic socio‐economic feature of the Mediterranean region whose environmental and economic sustainability depends on the ability of forage resources to withstand climatically stressful conditions. Perennial forages such as tall fescue can be a valuable alternative to annuals, if they can survive across successive summer droughts. Three‐year dry matter yield and plant survival of five cultivars of Mediterranean‐type tall fescue were evaluated in six sites of Algeria, France, Italy, Morocco and Portugal, with the following objectives: (i) modelling adaptive responses and targeting cultivars as a function of environmental factors associated with genotype × location interaction; and (ii) defining plant ideotypes, adaptation strategies and opportunities for international co‐operation for regional breeding programmes. Site mean yield and winter temperatures were positively correlated, whereas sward persistence was positively correlated to lower site heat and drought stress. Cultivar adaptation was adequately modelled by factorial regression as a function of site spring–summer (April–September) drought stress (long‐term potential evapotranspiration minus actual water available) for yield, and annual drought stress for final persistence. Specific‐adaptation responses to high‐ or low‐stress environments emerged which were consistent with drought‐stress levels of cultivar selection environments. However, the wide‐adaptation response of cultivar Flecha suggested that breeding for wide adaptation can be feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.