In India, in terms of area under cultivation, citrus is the third most cultivated fruit crop after Banana and Mango. Among citrus group, lime is one of the most important horticultural crops in India as the demand for its consumption is very high. Hence, preparing citrus crop inventories using remote sensing techniques would help in maintaining a record of its area and production statistics.This study shows how accurately citrus orchard can be classified using both IRS Resourcesat-2 LISS-III and LISS-IV data and depicts the optimum bio-widow for procuring satellite data to achieve high classification accuracy required for maintaining inventory of crop. Findings of the study show classification accuracy increased from 55% (using LISS-III) to 77% (using LISS-IV). Also, according to classified outputs and NDVI values obtained, April and May months were identified as optimum bio-window for citrus crop identification.
<p><strong>Abstract.</strong> The use of satellite remote sensing (RS) technologies for purpose of crop discrimination, mapping, area estimation, condition and yield assessment has been proved to be effective and efficient in terms of time and cost, having better consistency implemented with scientific approaches. However, application of satellite RS technology for horticultural crops in India has certain challenges due to scattered and small field sizes, comparatively short duration such as vegetable crops and mixed cropping. Hence the study was taken for developing research methodology for area assessment of three major fruit crops such as Banana, Mango and Citrus over 20 districts in four states viz. Gujarat, Madhya Pradesh, Uttar Pradesh and Bihar. Appropriate bio-window for analysing different crop types was selected and mapping of crops were done using pixel based hybrid classification i.e. un-supervised ISODATA clustering plus supervised MXL classification as well as object based classification of high resolution remote sensing data (Resourcesat LISS III and/or LISS IV, Cartosat – 1 PAN) followed by their accuracy assessment and their comparison with departmental reported statistics. Overall, the classification accuracy was more than 80% for all the crops. Deviation from statistics were in the range of 3 to 38%. Higher deviations from statistics were mostly due to use of lower resolution satellite data or mixing of crops having similar spectral signatures e.g. mango and sapota in Navsari and Valsad districts of Gujarat. It was very difficult to discriminate the young orchards of 2&ndash;3 years from other field crops due to mixed / inter cropping practices. The maps were checked and certified by respective State Horticulture Departments and were archived in VEADS, SAC and BHUVAN, NRSC geoportals of ISRO. RISAT – 1 (microwave) data were explored for the estimation of banana orchards in order to detect banana plantation at early stage and under cloudy sky conditions. There is huge potential of application in this sector using advanced observations from hyperspectral, thermal infrared sensors and advanced radars or LIDAR’s on-board upcoming satellites.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.