This work presents a highly stable monolithic integrated CMOS LC-based frequency reference. The frequency reference is based on a Self-Compensated Oscillator (SCO) architecture where the LC tank operates at a specific phase Phi-NULL where frequency sensitivity versus temperature is minimum. A new compensation technique is applied over Phi-Null to further optimize frequency stability and extend the temperature range. The new technique is based on an analog approach and induces a minimum impact on oscillator phase noise, current consumption and die area. Utilizing this technique, the temperature range has been extended to (-40-105 o C) with a ±40ppm frequency stability. Achieved performance makes it possible for the SCO to be introduced to automotive applications where crystals suffer vibration induced stability issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.