This report describes single-nucleotide polymorphisms (SNPs) in the sheep major histocompatibility complex (MHC) class II and class III regions and provides insights into the internal structure of this important genomic complex. MHC haplotypes were deduced from sheep family trios based on genotypes from 20 novel SNPs representative of the class II region and 10 previously described SNPs spanning the class III region. All 30 SNPs exhibited Hardy-Weinberg proportions in the sheep population studied. Recombination within an extended sire haplotype was observed within the class II region for 4 of 20 sheep chromosomes, thereby supporting the presence of separated IIa and IIb subregions similar to those present in cattle. SNP heterozygosity varied across the class II and III regions. One segment of the class IIa subregion manifested very low heterozygosity for several SNPs spanning approximately 120 Kbp. This feature corresponds to a subregion within the human MHC class II region previously described as a 'SNP desert' because of its paucity of SNPs. Linkage disequilibrium (LD) was reduced at the junction separating the putative class IIb and IIa subregions and also between the class IIa and the class III subregions. The latter observation is consistent with either an unmapped physical separation at this location or more likely a boundary characterized by more frequent recombination between two conserved subregions, each manifesting high within-block LD. These results identify internal blocks of loci in the sheep MHC, within which recombination is relatively rare.
BackgroundThe major histocompatibility complex (MHC) is a chromosomal region that regulates immune responsiveness in vertebrates. This region is one of the most important for disease resistance because it has been associated with resistance or susceptibility to a wide variety of diseases and because the MHC often accounts for more of the variance than other loci. Selective breeding for disease resistance is becoming increasingly common in livestock industries, and it is important to determine how this will influence MHC polymorphism and resistance to diseases that are not targeted for selection. However, in sheep the order and sequence of the protein coding genes is controversial. Yet this information is needed to determine precisely how the MHC influences resistance and susceptibility to disease.MethodsCHORI bacterial artificial chromosomes (BACs) known to contain sequences from the sheep MHC class I region were sub-cloned, and the clones partially sequenced. The resulting sequences were analysed and re-assembled to identify gene content and organisation within each BAC. The low resolution MHC class I physical map was then compared to the cattle reference genome, the Chinese Merino sheep MHC map published by Gao, et al. (2010) and the recently available sheep reference genome.ResultsImmune related class I genes are clustered into 3 blocks; beta, kappa and a novel block not previously identified in other organisms. The revised map is more similar to Bovidae maps than the previous sheep maps and also includes several genes previously not annotated in the Chinese Merino BAC assembly and others not currently annotated in the sheep reference chromosome 20. In particular, the organisation of nonclassical MHC class I genes is similar to that present in the cattle MHC. Sequence analysis and prediction of amino acid sequences of MHC class I classical and nonclassical genes was performed and it was observed that the map contained one classical and eight nonclassical genes together with three possible pseudogenes.ConclusionsThe comprehensive physical map of the sheep MHC class I region enhances our understanding of the genetic architecture of the class I MHC region in sheep and will facilitate future studies of MHC function.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1992-4) contains supplementary material, which is available to authorized users.
The Major Histocompatibility Complex (MHC) is one of the most gene dense regions in the genome and studies in several species have shown significant associations between the MHC and disease. The endoplasmic reticular glycoprotein, tapasin, is involved in the MHC class I antigen presentation pathway. Sheep TAPASIN is located in the class IIb region of the MHC. Sheep TAPASIN was subcloned from BAC and cosmid genomic clones and DNA sequenced. TAPASIN is 9549bp in length and encodes a protein of 447 amino acids. The structure of sheep TAPASIN was similar to other mammals and consisted of eight exons with a distinctively larger intron between exon three and four. Sheep TAPASIN gene had high sequence identity with other mammalian TAPASINs. The TAPASIN gene sequence is conserved across many mammalian species and is possibly maintained through purifying selection with the average ratio of ds/dn of 3.9. Twenty-six SNPs in sheep TAPASIN were identified.
Corneodesmosin (CDSN) is an important component of the desmosome in the epidermal cornified stratum and inner root sheath of hair follicles. DNA from a sheep BAC clone previously identified by us to contain CDSN was PCR amplified using cattle-derived primers and the product sequenced. A region of 4579 bp containing CDSN was shown to contain two exons separated by one intron and spanning 3683 bp. The DNA encodes a predicted protein of 546 amino acids. Phylogenetic analysis shows that sheep CDSN falls within a clade containing cattle and other ruminant-like species. Comparison of sequences generated from 12 unrelated merino sheep and the International Sheep Genome Consortium (ISGC) data identified 58 single nucleotide polymorphisms (SNPs) within the 4579 bp region of which 16 are contained within coding sequences (1 in 80 bp). The SNPs identified in this study will add to the Major Histocompatibility Complex (MHC) SNP panel, which will allow extensive haplotyping of the sheep MHC in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.