Purpose: We recently reported that anionic phospholipids, principally phosphatidylserine, become exposed on the external surface of vascular endothelial cells in tumors, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we tested the hypothesis that a chimeric monoclonal antibody that binds phosphatidylserine could be labeled with radioactive arsenic isotopes and used for molecular imaging of solid tumors in rats. As (h -,T 1/2 1.6 days) using a novel procedure. The radionuclides of arsenic were selected because their long half-lives are consistent with the long biological half lives of antibodies in vivo and because their chemistry permits stable attachment to antibodies. The radiolabeled antibodies were tested for the ability to image subcutaneous Dunning prostate R3227-AT1tumors in rats. Results: Clear images of the tumors were obtained using planar g-scintigraphy and positron emission tomography. Biodistribution studies confirmed the specific localization of bavituximab to the tumors. The tumor-to-liver ratio 72 h after injection was 22 for bavituximab compared with 1.5 for an isotype-matched control chimeric antibody of irrelevant specificity. Immunohistochemical studies showed that the bavituximab was labeling the tumor vascular endothelium. Conclusions: These results show that radioarsenic-labeled bavituximab has potential as a new tool for imaging the vasculature of solid tumors.
A measurement of direct photon production in 208 Pb+ 208 Pb collisions at 158 A GeV has been carried out in the CERN WA98 experiment. The invariant yield of direct photons in central collisions is extracted as a function of transverse momentum in the interval 0.5 < pT < 4 GeV/c. A significant direct photon signal, compared to statistical and systematical errors, is seen at pT > 1.5 GeV/c. The results constitute the first observation of direct photons in ultrarelativistic heavy-ion collisions which could be significant for diagnosis of quark gluon plasma formation. 25.75.+r,13.40.-f,24.90.+p 1
Bioluminescent imaging (BLI) of luciferase-expressing cells in live small animals is a powerful technique for investigating tumor growth, metastasis, and specific biological molecular events. Three-dimensional imaging would greatly enhance applications in biomedicine since light emitting cell populations could be unambiguously associated with specific organs or tissues. Any imaging approach must account for the main optical properties of biological tissue because light emission from a distribution of sources at depth is strongly attenuated due to optical absorption and scattering in tissue. Our image reconstruction method for interior sources is based on the deblurring expectation maximization method and takes into account both of these effects. To determine the boundary of the object we use the standard iterative algorithm-maximum likelihood reconstruction method with an external source of diffuse light. Depth-dependent corrections were included in the reconstruction procedure to obtain a quantitative measure of light intensity by using the diffusion equation for light transport in semi-infinite turbid media with extrapolated boundary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.