Zingerone, 4‐(4‐hydroxy‐3‐methoxyphenyl)‐2‐butanone (Zg), a phenolic compound isolated from ginger is reported to have anti‐inflammatory and antidiabetic properties. However, its role in the promotion of osteogenesis is not known. In this study, we investigated the therapeutic effect of Zg on osteogenesis at the cellular and molecular levels. Zg treatment was nontoxic to mouse mesenchymal stem cells (mMSCs). At the cellular level, it enhanced osteoblast differentiation as evidenced by more calcium deposits. At the molecular level, Zg stimulated the expression of Runx2 (a bone transcription factor) and other marker genes of osteoblast differentiation in mMSCs. Recent studies indicated that microRNAs (miRNAs) regulate bone metabolism, and we identified that Zg treatment in mMSCs upregulated mir‐590, a positive regulator of Runx2 by targeting Smad7, an antagonist of TGF‐β1 signaling. Thus, the osteogenic potential of Zg would be beneficial for treating bone and bone‐related diseases.
Background:
The dynamic changes that bone undergoes during the ensemble of remodeling are administered by vital factors like Runx2 (a bone transcription factor) and matrix metalloproteinases (MMPs).
Aims:
Parathyroid hormone (PTH), an FDA approved drug for bone-related ailments, was seen to stimulate MMP-13 expression via Runx2 to ultimately aid in the bone remodeling process. MicroRNAs (miRNAs) have been shown to play a major role in controlling bone metabolism, and the use of miRNAs has recently become promising therapeutic avenues for the treatment of many diseases, including bone disorders. Thus, in this study, we attempted to investigate and evaluate the expression of MMP-13 via a miRNA profile targeting Runx2 under PTH-regulation in rat osteoblastic cells.
Methods:
Parathyroid hormone (PTH), an FDA approved drug for bone-related ailments, was seen to stimulate MMP-13 expression via Runx2 to ultimately aid in the bone remodeling process. MicroRNAs (miRNAs) have been shown to play a major role in controlling bone metabolism, and the use of miRNAs has recently become promising therapeutic avenues for the treatment of many diseases, including bone disorders. Thus, in this study, we attempted to investigate and evaluate the expression of MMP-13 via a miRNA profile targeting Runx2 under PTH-regulation in rat osteoblastic cells.
Results:
Overexpression of miR-290 decreased the expression of Runx2, the binding of Runx2 at the MMP-13 promoter, and the expression of MMP-13 mRNA in PTH-treated UMR106-01 cells. A dual luciferase reporter assay identified the direct targeting of Runx2 mRNA by miR-290 in these cells.
Conclusion:
Our findings indicate that the PTH-responsive miR-290 regulated Runx2-mediated MMP-13 expression in rat osteoblastic cells, suggesting miR-290 as a molecular marker or target in bone and bone-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.