Traditional measurement techniques “in situ” sometimes fail to magnify the spatial distribution of floods. For these cases, the remote sensors provide methodologies of very low economic cost and high reliability when mapping flooded areas and quantifying the damages. Due to the dynamic nature of these phenomena, it is necessary to use satellite images of high temporal resolution, however this type of images usually have a low spatial resolution. In relation to this problem, traditional classification techniques are not reliable enough for flood delineation and monitoring since they use “hard methods” of classification, where the coarse pixel is assigned a single type of coverage. On the other hand, “smoothed methods” have the ability to assign different kinds of coverage to the interior of the thick pixel. The present investigation makes the application of a sub-pixel analysis methodology (sub-pixel analysis - SA) for the monitoring of flooded areas. The improvement of the delimitation is achieved with the use of topographic attributes provided by a digital terrain model (DTM). The methodology was applied to the monitoring in the Great Depression Momposina, specifically to delineate the swamp of Zapatosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.