The influence of heat sources on instability in rotating viscoelastic liquids is studied. Linear stability analysis is done using normal modes. Computations are done for 10 boundary combinations and the results reveal that convection manifests via the oscillatory mode in this case. The critical values of the oscillatory and stationary instability have been studied. The results indicate individual stabilizing influences of rotation and strain retardation along with heat source in the case of free isothermal boundary conditions. It has quite unpredictable influences on the system stability in all the other boundary conditions for the chosen parameters. By suitable limiting processes, results pertaining to Oldroyd liquid B will lead to those of Maxwell, Newtonian, and Rivlin–Ericksen liquids. The problem finds applications in a working media consisting of viscoelastic liquids with nonisothermal systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.