The optimal design of reinforced concrete beams (RCBs) and structures with an objective of improving the chosen performances is an important problem in the field of construction works. Recently, the concrete beams, structures, and walls are strengthened externally by bonding fiber-reinforced polymer strips (FRPS). Usually, FRPS are employed in rehabilitation of existing beams, bridges, and other structural elements. This article modifies the problem of designing new RCBs with appropriate selection of FRPS with a goal of exploiting the benefits of FRPS such as higher tensile strength, better corrosion resistance, higher stiffness-to-weight ratio, and longer life. It, firstly, proposes an artificial neural network-based mathematical model for assessing the performances of RCBs bonded with FRPS from the data obtained from 69 FRPS-glued RCBs and then develops an optimal design procedure employing flower pollination-based optimization, which is imitated from the pollination process of plants, for obtaining design parameters of FRPS-glued RCBs with a view of enhancing both the ultimate load and the deflection ductility. It presents optimal design parameters of five FRPS-glued RCBs and experimentally validates the performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.