Proliferation and carcinogenesis of the large intestinal epithelial cells (IEC) cells is significantly increased in transgenic mice that overexpress the precursor progastrin (PG) peptide. It is not known if the in vivo growth effects of PG on IEC cells are mediated directly or indirectly. Full-length recombinant human PG (rhPG(1-80)) was generated to examine possible direct effects of PG on IEC cells. Surprisingly, rhPG (0.1-1.0 nM) was more effective than the completely processed gastrin 17 (G17) peptide as a growth factor. Even though IEC cells did not express CCK(1) and CCK(2) receptors (-R), fluorescently labeled G17 and Gly-extended G17 (G-Gly) were specifically bound to the cells, suggesting the presence of binding proteins other than CCK(1)-R and CCK(2)-R on IEC cells. High-affinity (K(d) = 0.5-1.0 nM) binding sites for (125)I-rhPG were discovered on IEC cells that demonstrated relative binding affinity for gastrin-like peptides in the order PG >or= COOH-terminally extended G17 >or= G-Gly > G17 > *CCK-8 (* significant difference; P < 0.05). In conclusion, our studies demonstrate for the first time direct growth effects of the full-length precursor peptide on IEC cells in vitro that are apparently mediated by the high-affinity PG binding sites that were discovered on these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.