Abstract. The estimation of biomass has been highly regarded for assessing carbon sources. In this paper, ALOS PALSAR, Sentinel-1, Sentinel-2 and ground data are used for estimating of above ground biomass (AGB) with SVM-genetic model Moreover Landsat satellite data was used to estimate land use change detection. The wide range of vegetation, textural and principal component analysis (PCA) indices (using optical images) and backscatter, decomposition and textural features (from radar images) are derived together with in situ collected AGB data into model to predict AGB. The results indicated that the coefficient of determination (R2) for ALOS PALSAR, Sentinel-1, Sentinel-2 were 0.51, 0.50 and 0.60 respectively. The best accuracy for combining all data was 0.83. Afterwards, the carbon stock map was calculated. Landsat series data were acquired to document the spatiotemporal dynamics of green spaces in the study area. By using a supervised classification algorithm, multi-temporal land use/cover data were extracted from a set of satellite images and the carbon stock time series simulated by using carbon stock maps and green space (urban forest) maps.
Assessment of forest above ground biomass (AGB) is critical for managing forest and understanding the role of forest as source of carbon fluxes. Recently, satellite remote sensing products offer the chance to map forest biomass and carbon stock. The present study focuses on comparing the potential use of combination of ALOSPALSAR and Sentinel-1 SAR data, with Sentinel-2 optical data to estimate above ground biomass and carbon stock using Genetic-Random forest machine learning (GA-RF) algorithm. Polarimetric decompositions, texture characteristics and backscatter coefficients of ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parameters and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples were used to estimate biomass. The overall coefficient (R2) of AGB modelling using combination of ALOSPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 0.70 and 0.62. The result showed that Combining ALOSPALSAR and Sentinel-1 data to predict AGB by using GA-RF model performed better than Sentinel-2 data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.