Introduction. In the actual era, the integration of decentralized generation in radial distribution networks is becoming important for the reasons of their environmental and economic benefits. Purpose. This paper investigate the optimal size, location and kind of decentralized generation connected in radial distribution networks using a new optimization algorithm namely bald eagle search. Methods. The authors check the optimal allocation of two kinds of decentralized generation the first is operated at unity power factor and the second is operated at 0.95 power factor, a multi-objective functions are minimized based on reduction of voltage deviation index, active and reactive power losses, while taking into consideration several constraints. Results. Simulation results obtained on Standard IEEE-33 bus and IEEE-69 bus radial distribution networks demonstrate the performance and the efficiency of bald eagle search compared with the algorithms existing in literature and radial distribution networks performances are improved in terms of voltage profile and notably active and reactive power losses reduction, decentralized generation operated at 0.95 power factor are more perfect than those operated at unit power factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.