The behaviour of a separated shear layer past a semi-circular leading edge flat plate, its transition and reattachment downstream to separation are investigated for different imposed pressure gradients. The experiments are carried out in a blowing tunnel for a Reynolds number of 2.44×105 (based on chord and free-stream velocity). The mean flow characteristics and the instantaneous vector field are documented using a two-component LDA and a planar PIV, whereas, surface pressures are measured with Electronically scanned pressure (ESP). The onset of separation occurs near the blend point for all values of β (flap angle deflection), however, a considerable shift is noticed in the point of reattachment. The dimensions of the separation bubble is highly susceptible to β and plays an important role in the activity of the outer shear layer. Instantaneous results from PIV show a significant unsteadiness in the shear layer at about 30% of the bubble length, which is further amplified in the second half of the bubble leading to three-dimensional motions. The reverse flow velocity is higher for a favourable pressure gradient (β = +30°) and is found to be 21% of the free stream velocity. The Reynolds number calculated based on ll (laminar shear layer length), falls in the range of 0.9×104 to 1.4×104. The numerical values concerning the criterion for separation and reattachment agree well with the available literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.