The article presents the solution to the problem of autonomous piloting of a quadcopter for a complex flight task to determine the positioning error. Mathematical model is proposed for the equation of the dynamics of angular motion in a connected coordinate system to solve this problem. The stages of elaboration and creation of a flight task are considered, a model based on directed graphs is presented, reflecting various options for organizing the movement of a quadcopter. Clover quadcopters were taken as the object of research. The study was carried out in the airfield of the laboratory of unmanned aerial systems of the Saint Petersburg State University of Aerospace Instrumentation (SUAI). Fragments of the program code for the implementation of autonomous piloting in Python are given. The flight mission consisted in the formation of the letters SUAI in space. The article discusses the necessary hardware, instrumental systems and camera modes of operation for fixing the movement of the quadcopter. As a result of the research, special photographs of the movement of the quadcopter are taken and the permissible range of positioning errors is determined for performing the flight task.
The article present the solution to the problem of autonomous piloting of a quadcopter for a complex flight task to determine the positioning error. Mathematical model is proposed for the equation of the dynamics of angular motion in a connected coordinate system to solve this problem. The stages of elaboration and creation of a flight task are considered, a model based on directed graphs is presented, reflecting various options for organizing the movement of a quadrocopter. Klever quadrocopters were taken as the object of research. The study was carried out in the airfield of the laboratory of unmanned aerial systems of the SUAI. Fragments of the program code for the implementation of autonomous piloting in Python are given. The flight mission consisted in the formation of the letters SUAI in space. The article discusses the necessary hardware, instrumental systems and camera modes of operation for fixing the movement of the quadcopter. As a result of the reserch, special photographs of the movement of the quadrocopter are taken and the permissible range of positioning errors is determined for performing the flight task. Key words: unmanned aerial vehicles, quadrocopter klever, autonomous flight, trajectory motion control, setting the trajectory of motion, aruco markers, positioning error, spatial movement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.