Using the cell model of regenerative cardiomyogenesis (formation of contracting cardiomyocyte colonies from resident stem cells), we found that the addition of cardiomyocyte-derived apoptotic bodies to the culture of neonatal myocardial cells stimulated proliferation and differentiation of cardiomyocyte precursors and the frequency of their contraction was 1.5-fold higher than in the control. Systemic administration of cardiomyocyte-derived apoptotic bodies to Wistar rats with chronic postinfarction heart failure during the early period of myocardial remodeling considerably improved the contractile function of the heart.
Composite chitosan fibers filled with chitin nanofibrils (CNF) were obtained by the wet spinning method. The paper discusses the mechanical properties of such type fibers and their hemocompatibility, as well as the possibility of optimizing these properties by adding chitin nanofibrils. It was shown that low CNF concentration (about 0.5%) leads to an increase in fiber tensile strength due to the additional orientation of chitosan macromolecules. At the same time, with an increase in the content of CNF, the stability of the mechanical properties of composite fibers in a humid medium increases. All chitosan fibers, except 0.5% CNF, showed good hemocompatibility, even on prolonged contact with human blood. The addition of chitin nanofibers leads to decrease in hemoglobin molecules sorption due to the decline in optical density at wavelengths of 414 nm and 540 nm. Nevertheless, the hemolysis of fibers was comparable or even lesser that carbon hemosorbent, which is actively used in clinical practice.
Background: The relevance of the work lies in the search for new hemocontact drugs with hemocompatibility and a pronounced activation effect on the cellular and humoral blood systems for their possible use in clinical practice during low-volume hemoperfusion.The aim of this work was to assess the activation capabilities of three granular hemosorbents by the rate of adhesion of blood cellular elements to the surface of granules in vitro.Materials and methods. When using the method of low-volume hemoperfusion (LVH) in the clinic it is important to take into account the activation properties of solid-phase granular drugs. Blood-contact interaction was carried out in bench conditions with the use of donated blood in rotary mode. Blood samples were taken before the experiment and after 5, 20, 40 and 60 minutes. Changes in blood cell and subcellular populations were evaluated using the Sysmex XT 1800i hematological analyzer (26 parameters), which made it possible to indirectly judge the activation of blood cells. 30 experiments were conducted. To analyze the activation functions of the hemocontact preparations the speed-time adhesive profile of blood cells on the sorbent was used.Results. The effect of using the preparations Silochrome S-120 and SPS in comparison with SСT-6A HP as contact hemoactivators can be more pronounced, since the activation potential of these sorbents for blood cells is much higher. Silochrome S-120 has the highest activation capabilities compared to SPS and SKT-6A HP.Conclusion. Adhesion rate indicators can be indicators of the activation of blood cells upon contact with foreign surfaces and serve as a criterion for assessing the activation capabilities of these surfaces when using the LVH method in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.