on a trinuclear, oxo-bridged, mixedvalence iron complex, Fe 3 O(O 2 CC(CH 3 ) 3 ) 6 (C 5 H 5 N) 3 , using both synchrotron and conventional radiation sources. The present study for the first time provides structural information for an oxo-bridged trinuclear compound below the boiling point of nitrogen (77 K). The use of very low-temperature crystallographic data is crucial for understanding the physical properties of the complex. No change of space group is observed in the whole temperature range, although a reversible broadening of the Bragg peaks is observed around 85 K. The structure has ordering processes involving the tert-butyl groups, and above 85 K, four tert-butyl groups become disordered. Around 150 K, a fifth tert-butyl becomes disordered, whereas the last tert-butyl is ordered at all temperatures. Very significant temperature-dependent changes in the Fe-ligand bond lengths are observed which are interpreted as being due to dynamic disorder caused by intramolecular electron transfer (ET) between the metal sites. The ET process is significantly affected by changes in the molecular potential energy surface (PES) caused by the dynamic behavior of the tert-butyls. The dynamic disorder of the Fe 3 O core resulting from the ET process is examined through analysis of the atomic displacement parameters. The ET process involves only two of the three iron sites, with the third site appearing to be valence-trapped at all temperatures. The trapping of this iron site at all temperatures appears to be related to the asymmetry caused by the different dynamic behaviors of the tert-butyls. At very low temperatures (<10 K), the system becomes valence-trapped and consists of a single configuration without disorder. Boltzmann population models are used to estimate the energy difference between the two lowest-lying minima on the PES (∆E < 100 cm -1 ) and between two disordered configurations of each of the tert-butyls (∆E ) 217, 212, 255, 359, and 345 cm -1 ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.