In this work we experimentally demonstrate 500 km unrepeatered transmission of a single-channel 100 Gb s −1 dual polarization quadrature phase shift keyed (DP-QPSK) signal. Such long distance transmission is achieved through the use of an advanced configuration of remotely pumped optical amplifiers (ROPAs), chromatic dispersion pre-compensation and ultra-low-loss Corning R SMF-28 R ULL optical fiber. Excellent long-term bit error ratio (BER) performance is observed. To the best of our knowledge this is the longest unrepeatered 100 Gb s −1 transmission reported to date.
In this work we experimentally demonstrate 1 Tbit/s (10 x 100 Gbit/s) unrepeatered transmission over 500.5 km using dual polarization quadrature phase shift keyed (DP-QPSK) format and real-time processing. Such ultra-long distance is enabled by the use of high-performance 100G DP-QPSK transponders (the required optical signal-to-noise ratio is 12 dB), ultra-low loss Corning SMF-28 ULL fiber (the average attenuation of the spools used in this experiment <0.160 dB/km), and optimization of remotely-pumped optical amplifiers. To the best of our knowledge this is the longest unrepeatered 100G-based 1 Tb/s WDM transmission distance reported to date.
Nonlinear noise in 100-Gb/s dual-polarization quadrature phase shift keying transmission has been investigated using a straight-line test bed. The optimal signal power and OSNR margin have been measured in up to 4000 km of G.652-fiber. The results have a good agreement with previously reported models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.