Изучается ветвление в полных дискретно нормированных полях. Для случая совершенного поля вычетов имеется хорошо разработанная теория групп ветвления. Хиодо ввел понятие глубины ветвления, связанное с дифферентой расширения, и получил неравенство, которое объединяет понятие глубины ветвления в циклическом расширении степени p 2 с понятием глубины ветвления в подрасширении степени p. В данной работе авторы детально рассматривают структуру расширений степени p 2 , которые могут быть получены композитом двух расширений степени p. При этом не требуется, чтобы поле вычетов было совершенным. Используя понятия дикого и свирепого расширений, а также дефекта главной единицы, авторы классифицируют расширения степени p 2 и получают более точные оценки для глубины ветвления. В ряде случаев приводятся точные формулы для глубины ветвления.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.