Fullerenes engineered nanomaterials are regarded as emerging environmental contaminants. This is as their widespread application in many consumer products, as well as natural release, increases their environmental concentration. In this work, an ultrasonic-assisted pressurized liquid extraction (UAPLE) method followed by high performance liquid chromatography with ultraviolet-visible detector (HPLC-UV-vis) was developed for extraction and determination of fullerene in sediments. The method was validated and found to be suitable for environmental risk assessment. Thereafter, the method was used for the determination of fullerene (C61-PCBM) in sediment samples collected from Umgeni River, South Africa. The current method allows for adequate sensitivity within the linear range of 0.01–4 µg g−1, method limit detection of 0.0094 µg g−1 and recoveries ranged between 67–84%. All the parameters were determined from fortified sediments samples. The measured environmental concentration (MEC) of fullerene in the sediment samples ranged from not detected to 30.55 µg g−1. To the best of our knowledge, this is the first report on the occurrence and ecological risk assessment of carbonaceous fullerene nanoparticles in African sediments and biosolids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.