Human umbilical vein endothelial cells (EC) were grown on elastic silicone membranes subjected to cyclic stretch, simulating arterial wall motion. Stretching conditions (20% amplitude, 52 cycle/min) stimulated stress fiber formation and their orientation transversely to the strain direction. Cell bodies aligned along the same axis after the actin cytoskeleton. EC orientation response was inhibited by the adenylate cyclase activator, forskolin (10(-5) M), which caused stress fiber disassembly and the redistribution of F-actin to the cortical cytoplasm. Preoriented EC depleted of stress fibers by forskolin treatment retained their aligned state. Thus, stress fibers are essential for the process of EC orientation induced by repeated strain, but not for the maintenance of EC orientation. The monolayer formed by EC grown to confluence in conditions of intermittent strain consisted of uniform elongated cells and was resistant to deformation. In contrast, the monolayer assembled in stationary conditions was less compliant and exposed local denudations on initiation of stretching. When stretched in the presence of 10(-5) M forskolin it rapidly (3-4 h) reestablished integrity but gained a heterogeneous appearance since denuded areas were covered by giant cells. The protective effect of forskolin was because of the stimulation of EC spreading. This feature of forskolin was demonstrated while studying its action on EC spreading and repair of a scratched EC monolayer in conventional culture. Thus mechanical deformation and adenylate cyclase activity may be important factors in the control of endothelium morphology in human arteries.
SummaryA new monoclonal antibody (mAb), VM64, reacts with a common antigen on the surface of human platelets and vascular endothelial cells (EC). Under nonreduced conditions it recognized in immunoblotting a protein of 130 kDa both in platelets and EC. VM64 precipitated the same 130 kDa protein from the lysate of surface radioiodinated platelets. Electrophoretic mobility of this protein was not altered by reduction and differed from the bands precipitated by reference mAb against platelet glycoproteins (GP) Ia–IIa, Ib, IIb–IIIa and GMP130. VM64 binding to platelets and EC was specific and saturable. The number of binding sites on platelets was 9.9 ± 3.5 × 103 per platelet and on the surface of EC monolayer – 2.40 ± 0.32 × 106 per cell. VM64 also binds to platelets from Glanzmann's thrombasthenia patients which lack GPIIb–IIIa. VM64 did not affect platelet aggregation induced by ADP, collagen, thrombin and ristocetin. In the monolayers of EC from umbilical vein and human aorta, VM64 stained the area at the periphery of the cells adjacent to the cell-cell boundaries. In preconfluent cultures preferential staining was observed at the active leading margins of the cells. Unlike EC cultures from umbilical vein, where all cells were positively stained, in aortic EC cultures some unstained or poorly stained cells were constantly present, indicating a heterogeneity of EC population related to the expression of VM64 antigen. The biochemical characteristics of VM64 antigen, its presence both on platelets and EC and typical distribution on the surface of EC suggested that this antigen is identical to PECAM (CD31) protein.
Stem cells capable of long-term proliferation and differentiation into different cell types may be a promising source of cells for regenerative medicine. Recently, much attention has been paid to fetal stem cells, among which are cells from amniotic fluid (AF). We have isolated amniotic stem cells from 3 AF samples. Flow cytometry, RT -PCR and immunohistochemistry have shown that these cells express mesenchymal (CD90, CD73, CD105, CD13, CD29, CD44, and CD146), neural (≤3-tubulin, Nestin, and Pax6), epithelial (keratin 19 and p63) markers and also markers of pluripotency (Oct4, Nanog, and Rex-1). Transplantation of the cells to nude mice does not lead to tumor formation. Thus, putative stem/progenitor cells from AF are capable of long-term proliferation in vitro and the profile of gene expression led us to speculate that they have greater differentiation potential than mesenchymal stem cells and may be useful for cell therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.