A strategy to locate spectroscopic probes in micelles is presented which involves establishing a "benchmark" probe, i.e., one whose position is well-known and against which other probe positions may be established. Theoretically calculated values of the fraction of the micelle polar shell occupied by water, H(shell), are compared with experimental values measured with the spin probe 5-doxylstearic acid methyl ester (5DSE) for a series of sodium n-alkyl sulfate micelles as functions of both the aggregation numbers and the alkyl chain length. The theoretical values involve one adjustable parameter that may be taken to be the volume in the polar shell inaccessible to water, V(dry). Under the hypothesis that the thickness of the polar shell (5 Angstroms) remains constant as either the aggregation number or the chain length is varied, we find excellent agreement between the theoretical predictions and the experimental results, using the same value of V(dry) for chain lengths 8-12 and for aggregation numbers varying from approximately 38 to 130. We argue that these are compelling reasons that 5DSE follows the zero-order model (ZOM) of probe location. The ZOM applies to any probe that rapidly diffuses within the confines of the micelle polar shell and nowhere else. Thus, 5DSE can serve as a benchmark in the sodium alkyl sulfate micelles. As a further check, results are also presented for ammonium dodecyl sulfate micelles, where 5DSE is also found to follow the ZOM, i.e, no further adjustable parameters are needed to pass from the sodium alkyl sulfate micelles to ammonium dodecyl sulfate micelles. In contrast, results are also presented for a similar spin probe 16-doxylstearic acid methyl ester (16DSE) that is found not to adhere to the ZOM in any of the micelles. A simple first-order correction to the ZOM in which 16DSE is displaced slightly from the polar shell is shown to account for the results well. The necessary displacements, which range from about 0.7 Angstroms outside the polar shell to 1.3 Angstroms inside, are not correlated with either chain lengths or aggregation numbers; however, they correlate rather well with H(shell). Calibrations of 6-, 7-, 10-, and 12DSE spin probes are presented in the Appendix, making them available to measure microviscosities and effective water concentrations.
Time-resolved chemically induced dynamic nuclear polarization (TR-CIDNP) and laser flash photolysis (LFP) techniques have been used to measure rate constants for coupling between acrylate-type radicals and a series of newly synthesized stable imidazolidine N-oxyl radicals. The carbon-centered radicals under investigation were generated by photolysis of their corresponding ketone precursors RC(O)R (R = C(CH3)2-C(O)OCH3 and CH(CH3)-C(O)-OtBu) in the presence of stable nitroxides. The coupling rate constants kc for modeling studies of nitroxide-mediated polymerization (NMP) experiments were determined, and the influence of steric and electronic factors on kc values was addressed by using a Hammett linear free energy relationship. The systematic changes in kc due to the varied steric (Es,n) and electronic (sigmaL,n) characters of the substituents are well-described by the biparameter equation log(kc/M- 1s(-1)) = 3.52sigmaL,n + 0.47Es,n + 10.62. Hence, kc decreases with the increasing steric demand and increases with the increasing electron-withdrawing character of the substituents on the nitroxide.
Values of the degree of counterion dissociation, R, for sodium n-alkyl sulfate micelles, denoted by SN c S, where N c is the number of carbon atoms in the alkyl chain, are defined by asserting that the aggregation number, N, is dependent only on the concentration, C aq , of counterions in the aqueous pseudophase. By using different combinations of surfactant and added salt concentrations to yield the same value of N, R can be determined, independent of the experimental method. Electron paramagnetic resonance measurements of the hyperfine spacings of two nitroxide spin probes, 16-and 5-doxylstearic acid methyl ester (16DSE and 5DSE, respectively), are employed to determine whether micelles from two samples have the same value of N to high precision. The EPR spectra are different for the two spin probes, but the values of R are the same, within experimental error, as they must be. In agreement with recent work on S12S and with prevailing thought in the literature, values of R are constant as a function of N. This implies that the value of R is constant whether the surfactant or added electrolyte concentrations are varied. Interestingly, R varies with chain length as follows: However, the theory also predicts that, for a given value of N c , R decreases as N increases. Moreover, this decrease is predicted to be different if N is increased by adding salt or by increasing the surfactant concentration. A modification to the theory in which dissociated counterions contribute to the ionic strength while added co-ions (Cl -) do not, brings theory and experiment into closer accord. Assuming R to be constant versus N permits a direct application of the aggregation number-based definition of R using time-resolved fluorescence quenching to measure values of N as well as other experimental parameters that vary monotonically with N, such as the microviscosity measured with spin probes and the quenching rate constant. For S13S micelles at 40°C, R ) 0.20 ( 0.02 is derived from N; R ) 0.21 ( 0.02 from the microvisicosity, and R ) 0.21 ( 0.02 from the quenching rate constants, in agreement with the hyperfine spacing results. The aggregation numbers for S13S are well described by the power law N ) N°(C aq /cmc 0 ) γ , where cmc 0 is the critical micelle concentration in the absence of added salt, N°) 67, and γ ) 0.26.
The location of pyrene in sodium dodecyl sulfate (SDS) micelles is determined as a function of the aggregation number, N, by exploiting the fact that spin probes 5- and 16-doxyl stearic acid methyl esters (5DSE and 16DSE, respectively) are effective quenchers of pyrene fluorescence. The locations of the two spin probes are known from Part 1 of this series (J. Phys. Chem. B 2006, 110, 9791) and the distance between the probes and pyrene is determined by using a hydrodynamic theory to predict the quenching rate constant. The hydrodynamic theory requires the microviscosity of the regions through which the probe and pyrene diffuse. The same spin probe that serves as quencher provides a measure of the microviscosity; thus, all the information needed to locate pyrene is available from each spin probe. Employing 5DSE, at N = 53, pyrene is found to diffuse through a zone 67% of which lies within the Stern layer and 33% in the core. As the micelle grows, due to increasing either the surfactant or added-salt concentration, this diffusion zone moves outward such that, at N = 130, near the sphere-rod transition, it lies approximately 75% within the Stern layer and 25% in the core. Employing 16DSE, the location of pyrene is within 0.4 A of that found from 5DSE at low values of N and within 0.8 A at high values. Full information required to locate pyrene by using the currently developed method is not yet available for other spin probes and other commonly employed quenchers; nevertheless, using a variety of strategies and reasonable assumptions leads to the same location of pyrene within the uncertainties of the method. All of the spectroscopic probes employed in this study are largely located within the polar shell of the micelles, the largest departure being about 4% of the diameter of the micelle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.