In breast cancer, the tumor microenvironment plays a critical role in the tumor progression and responses to therapy. Tumor-associated macrophages (TAMs) are major innate immune cells in tumor microenvironment that regulate intratumoral immunity and angiogenesis by secretion of cytokines, growth factors as well as chitinase-like proteins (CLPs), that combine properties of cytokines and growth factors. YKL-39 is a chitinase-like protein found in human and absent in rodents, and its expression in TAMs and role in breast cancer progression was not studied to date. Here for the first time we demonstrate that YKL-39 is expressed on TAMs, predominantly positive for stabilin-1, but not by malignant cells or other stromal cells in human breast cancer. TGF-beta in combination with IL-4, but not IL-4 alone was responsible of the stimulation of the production of YKL-39 in human primary macrophages. Mechanistically, stabilin-1 directly interacted with YKL-39 and acted as sorting receptor for targeting YKL-39 into the secretory pathway. Functionally, purified YKL-39 acted as a strong chemotactic factor for primary human monocytes, and induced angiogenesis in vitro. Elevated levels of YKL-39 expression in tumors after neoadjuvant chemotherapy (NAC) were predictive for increased risk of distant metastasis and for poor response to NAC in patients with nonspecific invasive breast carcinoma. Our findings suggest YKL-39 as a novel therapeutic target, and blocking of its activity can be combined with NAC in order to reduce the risk of metastasis in breast cancer patients.
Intratumor heterogeneity inherent in the majority of human cancers is a major obstacle for a highly efficient diagnosis and successful prognosis and treatment of these diseases. Being a result of clonal diversity within the same tumor, intratumor heterogeneity can be manifested in variability of genetic and epigenetic status, gene and protein expression, morphological structure, and other features of the tumor. It is most likely that the appearance of this diversity is a source for the adaptation of the tumor to changes in microenvironmental conditions and/or a tool for changing its malignant potential. In any case, both processes result in the appearance of cell clones with different undetermined sets of hallmarks. In this review, we describe the heterogeneity of molecular disorders in various human tumors and consider modern viewpoints of its development including genetic and non-genetic factors of heterogeneity origin and the role of cancer stem cells and clonal evolution. We also systematize data on the contribution of tumor diversity to progression of various tumors and the efficiency of their treatment. The main problems are indicated in the diagnosis and therapy of malignant tumors caused by intratumor heterogeneity and possible pathways for their solution. Moreover, we also suggest the key goals whose achievement promises to minimize the problem of intratumor heterogeneity and to identify new prognostic, predictive, and target markers for adequate and effective treatment of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.