Biomass processing wastes (humins) are anticipated to become a large-tonnage solid waste in the near future, owing to the accelerated development of renewable technologies based on utilization of carbohydrates. In this work, the utility of humins as a feedstock for the production of activated carbon by various methods (pyrolysis, physical and chemical activation, or combined approaches) was evaluated. The obtained activated carbons were tested as potential electrode materials for supercapacitor applications and demonstrated combined micro- and mesoporous structures with a good capacitance of 370 F g (at a current density of 0.5 A g ) and good cycling stability with a capacitance retention of 92 % after 10 000 charge/discharge cycles (at 10 A g in 6 m aqueous KOH electrolyte). The applicability of the developed activated carbon for practical usage as a supercapacitor electrode material was demonstrated by its successful utilization in symmetric two-electrode cells and by powering electric devices. These findings provide a new approach to deal with the problem of sustainable wastes utilization and to advance challenging energy storage applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.