The paper describes about the development of a Named Entity Recognition (NER) system for Geological text using Conditional Random Fields (CRFs). The system makes use of the different contextual information of the words along with the variety of features that are helpful in predicting the various named entity (NE) classes. The NE tagged geological corpus was developed from the collection of scientific reports and articles on the geology of the Indian subcontinent has been used to build up the system. The training set consists of more than 2 lakh words and has been manually annotated with a NE tag set of seventeen tags. The system is able to recognize 17 classes of NEs with 75.8% Fmeasure.
Speaker recognition in an emotive environment is a bit challenging task because of influence of emotions in a speech. Identifying the speaker from the speech can be done by analyzing the features of the speech signal. In normal conditions, identifying a speaker is not a tedious task. Whereas, identifying the speaker in an emotional environment such as happy, sad, anger, surprise, sarcastic, fear etc. is really challenging, since speech becomes altered under emotions and noise. The spectral features of speech signal include Mel Frequency Cepstral Coefficients(MFCC), Shifted Delta Cepstral Coefficients (SDCC), spectral centroid, spectral roll off, spectral flatness, spectral contrast, spectral bandwidth, chroma-stft, zero crossing rate, root mean square energy, Linear Prediction Cepstral Coefficients (LPCC), spectral subband centroid, Teager energy based MFCC, line spectral frequencies, single frequency cepstral coefficients, formant frequencies, Power Normalized Cepstral Coefficients (PNCC), etc. The features that are extracted from the speech signal are classified using classifiers. Support Vector Machine(SVM), Gaussian Mixture Model, Gaussian Naive Bayes, K-Nearest Neighbour, Random Forest and a simple Neural Network using Keras is used for classification. The important application include security systems in which a person can be identified by biometrics that is voice of the person. The work aims to identify the speaker in an emotional environment using spectral features and classify using any of the classification techniques and to achieve a high speaker recognition rate. Feature combinations can also be used to improve accuracy. The proposed model performed better than most of the state-of-the-art methods.
Speaker Recognition is known as the task of recognizing the person speaking from his/her speech. Speaker recognition has many applications including transaction authentication, access control, voice dialing, web services, etc. Emotive speaker recognition is important because in real life, human beings extensively express emotions during conversations, and emotions alter the human voice. A text-independent speaker recognition system is proposed in the work. The system designed is for emotional environment. The proposed system in this work is trained using the speech samples recorded in neutral environment and the system evaluation is performed in an emotional environment. Here, excitation source features are used to represent speakerspecific details contained in speech signal. The excitation source signal is obtained after separating the segmental level features from the voice samples. The excitation source signal is almost considered as a noise so identifying a speaker in an emotive environment is a challenging task. Excitation features include Linear Prediction (LP) residual, Glottal Closure Instance (GCI), LP residual phase, residual cepstrum, Residual Mel-Frequency Cepstral Coefficient (R-MFCC), etc. A decrease in performance is observed when the system is trained with neutral speech samples and tested with emotional speech samples. Different emotions considered for emotional speaker identification are happy, sad, anger, fear, neutral, surprise, disgust, and sarcastic For the classification of speakers the algorithms used are Gaussian Mixture Model (GMM), Support Vector Machine (SVM), K-Nearest Neighbor(KNN), Random Forest and Naive Bayes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.