Climate is one of the key drivers of the plant community’s structure and trends. However, the regional vegetation-climate features in the ecotone have not yet been sufficiently studied. The aim of the research is to study features of Pinus sibirica Du Tour germination, survival, and growth in the mountain tundra of the Northern Urals against the background of a changing climate. The following research objectives were set: To determine the abundance and age structure of P. sibirica undergrowth on the mountain tundra plateau, identify the features of P. sibirica growth in the mountain tundra, and examine the correlation between the multi-year air temperature pattern, precipitation, and P. sibirica seedling emergence. A detailed study of the Pinus sibirica natural regeneration in the mountain stony shrub-moss-lichen tundra area at an altitude of 1010–1040 m above sea level on the Tri Bugra mountain massif plateau (59°30′ N, 59°15′ E) in the Northern Urals (Russia) has been conducted. The research involved the period between 1965 and 2017. Woody plant undergrowth was considered in 30 plots, 5 × 5 m in size. The first generations were recorded from 1967–1969. The regeneration has become regular since 1978 and its intensity has been increasing since then. Climate warming is driving these processes. Correlation analysis revealed significant relationships between the number of Pinus sibirica seedlings and the minimum temperature in August and September of the current year, the minimum temperatures in May, June, and November of the previous year, the maximum temperatures in May and August of the current year, and precipitation in March of both the current and previous years. However, the young tree growth rate remains low to date (the height at an age of 45–50 years is approximately 114 ± 8.8 cm). At the same time, its open crowns are rare single lateral shoots. The length of the side shoots exceeds its height by 4–5 times, and the length of the lateral roots exceeds its height by 1.2–1.5 times. This is an indicator of the extreme conditions for this tree species. With the current rates of climate warming and the Pinus sibirica tree growth trends, the revealed relationships allow for the prediction that in 20–25 years, the mountain tundra in the studied Northern Urals plateau could develop underground-closed forest communities with a certain forest relationship. The research results are of theoretical importance for clarifying the forest-tundra ecotone concept. From a practical point of view, the revealed relationship can be used to predict the trend in forest ecosystem formation in the mountain forest-tundra ecotone.
The research is devoted to an urgent modern problem: the identification of temperature factors that limit the distribution and survival of plants in the mountainous conditions of the Northern Urals. The article’s aim is to determine the air temperature in four altitudinal zones of the southern part of the Northern Urals (Sverdlovsk region 59º30´N, 59º15´E) and to identify regression relationships of the obtained temperature data with control temperature data from the nearest meteorological station. Registration of air temperatures was carried out from May to September 2019 around the clock, every two hours in the mountain forest zone (at an altitude of 460 and 640 m above sea level) under the canopy of Siberian stone pine forests, in the zone of subalpine woodlands with elements of mountain forest tundra (820 m above sea level) and on a plateau in the mountain tundra zone (1030 m above sea level). It has been established that the change in air temperature at different altitude levels and at the nearest meteorological station (far from 60 km, at an altitude of 202 m above sea level) occurs relatively synchronously. Difference between average daily temperatures at altitudes of 460, 640, 820 and 1030 m above sea level and the control data of the meteorological station is 2.2, 3.0, 4.7 and 5.1ºC respectively. For all altitude levels, a reliable close straight-line relationship between average daily air temperatures and meteorological station data has been established. The altitudes of 460, 640, 820 and 1030 m above sea level correspond to the coefficients of determination ( R 2) equal to 0.96, 0.95, 0.92 and 0.88. The relationship of the minimum temperatures of the corresponding altitude levels with the control data is also quite high ( R 2 is not lower than 0.7). With the help of the identified relationships and the obtained regression equations, it is possible to retrospectively restore the dynamics of the thermal regime according to the meteorological station data for mountain habitats of different altitudes in the southern part of the Northern Urals over a long period. Including extreme critical temperatures, which act as factors limiting the resettlement and survival of plants and determine the ecosystem biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.