Ion interpenetration, stagnation, and energization processes are studied in colliding laser-produced plasma configurations relevant to Trident [R. G. Watt, Rev. Sci. Instrum. 64, 1770 (1993)] experiments using four different numerical methods: one-dimensional Monte Carlo and Lagrangian multifluid codes, and one- and two-dimensional hybrid (particle ions, fluid electrons) and single-fluid Lagrangian codes. Results from the four methodologies are compared for plasmas generated with gold and deuterated polyethylene (CD2) targets. Overall, the various codes give similar results concerning the initial expansion of the plasmas and their collisional interaction, the degree of stagnation, stagnation time, and amount of ion thermalization for gold targets, while multispecies techniques indicate a much softer stagnation for CD2 plasmas than the single-fluid model. Variations in the results of the calculations due to somewhat different initializations and parameters, as well as to different physics in the codes, are discussed.
Review of some research into laser thermonuclear fusion
carried out in Russian Federal Nuclear Center (RFNC-VNIIEF)
within the last several years is presented. The review
begins with a brief survey into ICF development in RFNC-VNIIEF
starting from A.D. Sakharov and S.B. Kormer's pioneer
proposals of the 1960s. The review concludes with the exposition
of historical background of the 10 TW ISKRA-4 and 100 TW
ISKRA-5 laser facilities creation and with the prospects
of the 300 kJ ISKRA-6 (λ= 0.35 μm) laser
development. The results of survey carried out at the ISKRA-5
facility are presented in the review. The high degree of symmetry
(nonuniformity < 3%) of irradiation of a DT-shell by the X-ray
emission made it possible to successfully conduct experiments
with the asymmetrical shells. The asymmetry was effected through
the asymmetrical Mg layers deposition on a spherically uniform
glass shell surface. The asymmetry impact on neutron yield and
the moment of neutron generation was investigated. The line
X-ray emission characteristics of the H-like and He-like
Ar, Fe, and Al ions were studied in another set of experiments.
Ar was doped into DT-gas, while Fe and Al were deposited
on the CH spherical hohlraums' inner surface. Development
of the Cherenkov radiation generator in which the electron
motion is actuated by the faster-than-light X-ray pulse
motion on the surface of a plane sample, being under voltage,
is reported. And in fine a brief description of experiments
carried out at the ISKRA-4 facility under the program of
turbulent mixing in plane multi layer targets is presented.
Possibilities of manipulating the Rabi frequency and luminescence rate from degenerate-level systems as well as the velocity of self-induced transparency of multi-level media are studied using a unitary transformation. The Rabi frequency and luminescence rate of an electronic system whose ground level is degenerate and coupled to a resonant mode are found to depend on the level of the degeneracy. The velocity of multi-mode optical solitons in a multi-level medium is found to be influenced by the number of propagating resonant pulses. Physical realizations of relevant systems are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.