At the Helmholtz center GSI, PHELIX (Petawatt High Energy Laser for heavy Ion eXperiments) has been commissioned for operation in stand-alone mode and, in combination with ions accelerated up to an energy of 13 MeV/u by the heavy ion accelerator UNILAC. The combination of PHELIX with the heavy-ion beams available at GSI enables a large variety of unique experiments. Novel research opportunities are spanning from the study of ionmatter interaction, through challenging new experiments in
Experiments were performed to study electron acceleration by intense sub-picosecond laser pulses propagating in sub-mm long plasmas of near critical electron density (NCD). Low density foam layers of 300-500 μm thickness were used as targets. In foams, the NCD-plasma was produced by a mechanism of super-sonic ionization when a well-defined separate ns-pulse was sent onto the foamtarget forerunning the relativistic main pulse. The application of sub-mm thick low density foam layers provided a substantial increase of the electron acceleration path in a NCD-plasma compared to the case of freely expanding plasmas created in the interaction of the ns-laser pulse with solid foils. The performed experiments on the electron heating by a 100 J, 750 fs short laser pulse of 2-5×10 19 W cm −2 intensity demonstrated that the effective temperature of supra-thermal electrons increased from 1.5-2 MeV in the case of the relativistic laser interaction with a metallic foil at high laser contrast up to 13 MeV for the laser shots onto the pre-ionized foam. The observed tendency towards a strong increase of the mean electron energy and the number of ultra-relativistic laseraccelerated electrons is reinforced by the results of gamma-yield measurements that showed a 1000fold increase of the measured doses. The experiment was supported by 3D-PIC and FLUKA simulations, which considered the laser parameters and the geometry of the experimental set-up. Both, measurements and simulations showed a high directionality of the acceleration process, since the strongest increase in the electron energy, charge and corresponding gamma-yield was observed close to the direction of the laser pulse propagation. The charge of super-ponderomotive electrons with energy above 30 MeV reached a very high value of 78 nC.
We report on enhanced laser driven electron beam generation in the multi MeV energy range that promises a tremendous increase of the diagnostic potential of high energy sub-PW and PW-class laser systems. In the experiment, an intense sub-picosecond laser pulse of ∼1019 Wcm−2 intensity propagates through a plasma of near critical electron density (NCD) and drives the direct laser acceleration (DLA) of plasma electrons. Low-density polymer foams were used for the production of hydrodynamically stable long-scale NCD-plasmas. Measurements show that relativistic electrons generated in the DLA-process propagate within a half angle of 1 2 ± 1° to the laser axis. Inside this divergence cone, an effective electron temperature of 10–13 MeV and a maximum of the electron energy of 100 MeV were reached. The high laser energy conversion efficiency into electrons with energies above 2 MeV achieved 23% with a total charge approaching 1 μC. For application purposes, we used the nuclear activation method to characterize the MeV bremsstrahlung spectrum produced in the interaction of the high-current relativistic electrons with high-Z samples and measured top yields of gamma-driven nuclear reactions. The optimization of the high-Z target geometry predicts an ultra-high MeV photon number of ∼1012 per shot at moderate relativistic laser intensity of 1019 Wcm−2. A good agreement between the experimental data and the results of the 3D-PIC and GEANT4-simulations was demonstrated.
Intense heavy ion beams from the Gesellschaft für Schwerionenforschung~GSI, Darmstadt, Germany! accelerator facilities, together with two high energy laser systems: petawatt high energy laser for ion experiments~PHELIX! and nanosecond high energy laser for ion experiments~NHELIX! are a unique combination to facilitate pioneering beam-plasma interaction experiments, to generate and probe high-energy-density~HED! matter and to address basic physics issues associated with heavy ion driven inertial confinement fusion. In one class of experiments, the laser will be used to generate plasma and the ion beam will be used to study the energy loss of energetic ions in ionized matter, and to probe the physical state of the laser-generated plasma. In another class of experiments, the intense heavy ion beam will be employed to create a sample of HED matter and the laser beam, together with other diagnostic tools, will be used to explore the properties of these exotic states of matter. The existing heavy ion synchrotron facility, SIS18, deliver an intense uranium beam that deposit about 1 kJ0g specific energy in solid matter. Using this beam, experiments have recently been performed where solid lead foils had been heated and a brightness temperature on the order of 5000 K was measured, using a fast multi-channel pyrometer that has been developed jointly by GSI and IPCP Chernogolovka. It is expected that the future heavy ion facility, facility for antiprotons and ion research~FAIR! will provide compressed beam pulses with an intensity that exceeds the current beam intensities by three orders of magnitude. This will open up the possibility to explore the thermophysical and transport properties of HED matter in a regime that is very difficult to access using the traditional methods of shock compression. Beam plasma interaction experiments using dense plasmas with a G-parameter between 0.5 and 1.5 have also been carried out. This dense Ar-plasma was generated by explosively driven shockwaves and showed enhanced energy loss for Xe and Ar ions in the energy range between 5.9 to 11.4 MeV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.