Optically pumped solid-state lasers with Nd:YAG may have to operate over a wide range of temperatures. We designed and fabricated a diode double end-pumped Nd:YAG laser for free space laser communication. Various laser beam parameters have been characterized for the same application. The temperature dependence of the effective stimulated emission cross section for 4 F 3/2 → 4 I 11/2 transition and fractional thermal loading of Nd:YAG are determined using a planar resonator with two collimated and focused pump beams from fiber-array package laser diodes at 808 nm. The pump power-induced thermal lensing is used to stabilize the cavity. The diode double end-pumped Nd:YAG laser possesses an extremely good beam profile that exactly matches the theoretical Gaussian intensity distribution up to a diode current of 30 A. After that the ellipticity slightly increases, indicating deviation from the circular symmetry of beam, which may be due to the thermally induced birefringence of the Nd:YAG crystal offered to the polarized laser beam. The thermal lens focal length decreases with an increase in the absorbed pump power, similar to the case of a lamp pumped Nd:YAG laser and a diode pumped Nd: YVO 4 laser. All the results indicate that the laser beam characteristics are useful for high data rate free space laser communication links.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.