The UK has introduced legislation that requires net-zero greenhouse gas emissions to be achieved by 2050. Improving the energy efficiency of homes is a key objective to help reach this target, and the UK government’s Clean Growth Strategy aims to get many homes up to an Energy Performance Certificate (EPC) Band of C by 2035. The relationship between home energy-efficiency and occupant health and wellbeing remains an area of ongoing research. This paper explores the nexus between home energy efficiency, energy consumption and self-reported health—an indicator of the general health and wellbeing of the population. We focus on Greater London through secondary data analysis. Energy-efficiency ratings and air infiltration rates of dwellings, derived from EPCs, were aggregated and matched to local area self-reported health and energy consumption data obtained from the Greater London Authority’s (GLA) Lower Layer Super Output Area (LSOA) Atlas database. Our regression model indicates that improving the energy efficiency (SAP) rating by 10 points for a typical home may reduce household gas consumption by around 7% (95% CIs: 2%, 14%). Beta regression finds a positive, but not statistically significant association between median SAP rating and the proportion of the population reporting ‘good or very good’ health when considering all Greater London LSOAs (z score = 0.60, p value = 0.55). A statistically significant positive association is observed however when repeating the analysis for the lowest income quartile LSOAs (z score = 2.03, p value = 0.04). This indicates that the least well-off may benefit most from home energy efficiency programs. A statistically significant positive association is also observed for the relationship between self-reported health and air infiltration rates (z score = 2.62, p value = 0.01). The findings support existing evidence for the predominantly naturally ventilated UK housing stock, suggesting that home energy efficiency measures provide a co-benefit for occupant health provided that adequate air exchange is maintained.
The UK has introduced ambitious legislation for reaching net zero greenhouse gas (GHG) emissions by 2050. Improving the energy efficiency of homes is a key priority in achieving this target and solutions include minimising unwanted heat losses and decarbonising heating and cooling. Making a dwelling more airtight and applying insulation can result in a lower energy demand by reducing unwanted heat loss through fabric and openings. However, the supply of sufficient outdoor air is required to dilute indoor airborne pollutants. This research investigates the relationship between dwelling air infiltration and self-reported health at population neighbourhood level for Greater London. This paper links data from a variety of sources including Energy Performance Certificates (EPCs), the Greater London Authorities’ Large Super Output Area (LSOA) Atlas and the Access to Healthy Assets and Hazards (AHAH) database at LSOA level. Beta regression has been performed to assess the influence of air infiltration rate on self-reported health, whilst controlling for other socioeconomic factors. All factors have been ranked in order of their association with self-reported health. Findings indicate that air infiltration rate has a positive association with the percentage of people reporting themselves to be in “good or very good” health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.