Detecting vehicle motions are a progressively significant part in road surveillance and Traffic organizing systems. This paper presents a new Deep Gaussian based mixture model that predicts accurate in detecting vehicle motions. Although the existing arrangements based on conventional Gaussian mixture model which is limited in insufficient of many distinct points which eliminate covariance and solutions relative to infinite likelihood. In the proposed scheme, the deep learning neural network is used for including the more points with nested mixture models. To overcome the effects of adding more points the modification achieved in architecture development. The validation of proposed scheme is achieved with real-time videos and process with scikit learn based model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.