This paper describes methodology for application of a rapid prototyping using subtractive, additive and formative technology based on STL files. Rapid prototyping technology includes using of a digital information chain CAD/CAM/CNC to a level which allows the successful realization of the physical models based on new technologies by adding, subtracting and molding material. The paper discusses about the usual technologies for rapid prototyping, for which a generalized methodology for their application has been proposed. The possibilities for program verification prior to the realization of the model were also shown. The methodology is verified on real examples of making selected parts. Used technologies are subtracting and adding material layers, layer by layer, and mold making (by adding material) for molding the silicone model.
This paper describes configuring the virtual horizontal machining center LOLA HBG80 within the programming and verification system and the open architecture control system. The horizontal machining center LOLA HBG 80 is represented by an equivalent virtual machine in a CAD/CAM environment (PTC Creo and Catia), STEP-NC Machine environment, and the control system. Virtual simulation is essential for machining, and the developed virtual machines are used for program verification and monitoring of the machining process. The virtual machine in the programming system allows the verification of the program before sending it to the real machine and includes verification of the tool path (CLF-Cutter Location File) and G-code. The paper also discusses the possibility of applying a new programming method known as STEP-NC and preparing an adequate environment that includes a virtual machine. The virtual machine in the control system represents the last level for the final program verification and the process monitoring system.
Presented research is focused on CNC milling operations of planar contours with flat end mills. Paper presents a set of functions requred for processing the workpiece model and NC part program in order to reconstruction the instantneous area of workpiece engaged by the tool. A Z-map interpretation of workpiece was chosen. Reconstructed engagement map, with previously obtained specific cutting forces, is enough for prediction of instantaneous and representative milling forces in points of programmed toolpath. Further, in order to maintain a specified level of milling force, the correction of the feedrate in toolpath points and then rediscretization of the path is enabled. Paper presents an example of experimental identification of speciffic cutting forces and the results of applications of the procedures, developed in Matlab, for optimization of feedrates. Results obtained through experiments are used for discussion of advantages and limitations of applied models.
This paper presents an approach for developing the programming and offline simulation systems for low-cost industrial robots in the MatLab/Simulink environment. The approach is presented in the example of a virtual model of a 4-axis robot with hybrid kinematics intended for manipulation tasks. The industrial robot with hybrid kinematics consists of the well-known 5R planar parallel mechanism to which two serial axes have been added. The programming system developed in a MatLab environment involves generating G-code programs based on given pick and place points. The virtual model included in the simulation system is configured in the Simulink environment based on the CAD model of the robot and its kinematic structure. The kinematic model and the inverse kinematic problem have to be included in the virtual model to realize the motion of the virtual robot. The system of programming and simulation has been verified through several examples that include object manipulation to perform various tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.