Subantarctic Mode Water (SAMW) is the name given to the relatively deep surface mixed layers found directly north of the Subantarctic Front in the Southern Ocean, and their extension into the thermocline as weakly stratified or low potential vorticity water masses. The objective of this study is to begin an investigation into the mechanisms controlling SAMW formation, through a heat budget calculation. ARGO profiling floats provide estimates of temperature and salinity typically in the upper 2,000 m and the horizontal velocity at various parking depths. These data are used to estimate terms in the mode water heat budget; in addition, mode water circulation is determined with ARGO data and earlier ALACE float data, and climatological hydrography. We find a rapid transition to thicker layers in the central South Indian Ocean, at about 70°S, associated with a reversal of the horizontal eddy heat diffusion in the surface layer and the meridional expansion of the ACC as it rounds the Kerguelen Plateau. These effects are ultimately related to the bathymetry of the region, leading to the seat of formation in the region southwest of Australia. Upstream of this region, the dominant terms in the heat budget are the air-sea flux, eddy diffusion, and Ekman heat transport, all having approximately equal importance. Within the formation area, the Ekman contribution dominates and leads to a downstream evolution of mode water properties.
Numerical simulations are conducted across model platforms and resolutions with a focus on the North Atlantic. Barotropic vorticity diagnostics confirm that the subtropical gyre is characterized by an inviscid balance primarily between the applied wind stress curl and bottom pressure torque. In an area-integrated budget over the Gulf Stream, the northward return flow is balanced by bottom pressure torque. These integrated budgets are shown to be consistent across model platforms and resolution, suggesting that these balances are robust. Two of the simulations, at 100- and 10-km resolutions, produce a more northerly separating Gulf Stream but obtain the correct integrated vorticity balances. In these simulations, viscous torque is nonnegligible on smaller scales, indicating that the separation is linked to the details of the local dynamics. These results are shown to be consistent with a scale analysis argument that suggests that the biharmonic viscous torque in particular is upsetting the inviscid balance in simulations with a more northerly separation. In addition to providing evidence for locally controlled inviscid separation, these results provide motivation to revisit the formulation of subgrid-scale parameterizations in general circulation models.
Examining an ensemble of high‐resolution ((1/12)°) North Atlantic ocean simulations, we provide new insights into the partitioning of the Atlantic Meridional Overturning Circulation (AMOC) variability between forced and intrinsic at low‐frequency (2–30 years). We highlight the existence of a basin‐scale intrinsic mode that shares similarities with the atmospherically forced signal. The RAPID‐MOCHA‐WBTS array is found to be part of this mode, such that we ascribe about 0.9 Sv (50% in our configuration) of its interannual variability as intrinsic. At decadal time scales, intrinsic variability is rather small (∼0.2 Sv) compared to the recently observed 2‐ to 3‐Sv AMOC downturn. This downturn is thus unlikely to be induced by locally generated intrinsic ocean dynamics. We interpret this intrinsic variability as “chaotic,” that is, somewhat unpredictable, providing an estimation of the quantitative accuracy of AMOC variability within eddy‐resolving numerical models.
Data from a hydrographic section carried out in January-March 1994 offshore from the eastern coast of South America from 50S to 10N, are used to quantify the full-depth exchanges of water between the western boundary currents and the ocean interior. In the upper and intermediate layers, the westward transport associated with the southern branch of the South Equatorial Current was 49 Sv at the time of the cruise. The transports of the central and northern branches in the upper 200 m were 17 Sv and 12 Sv, respectively.After subtraction of the parts that recirculate in the subtropical, subequatorial, and equatorial domains, the fraction of the South Equatorial Current that effectively contributes to the warm water export to the North Atlantic is estimated at 18 Sv. The poleward boundary of the current southern branch is at 31S through the whole thickness of the subtropicalgyre, but the latitude of the northern boundary varies from 7°308S at the surface to 27S at 1400 m depth. The estimated latitude of its bifurcation into the Brazil Current and North Brazil Undercurrent also varies downward from about 14S at the surface to 28S at a depth of 600 m. In the North Atlantic Deep Water, eastward ows exceeding 10 Sv are observed at 3°-4°of latitude in both hemispheres, at 10S, and at 34S-30S. Between 4S and 17S, a net westward ow with an estimated transport of 19 Sv reinforces the southward deep western boundary current. Cyclonic circulations of Antarctic Bottom Water along the western boundaries of the Argentine and Brazil basins have amplitudes of 15 Sv and 13 Sv, respectively, exceeding those of the interbasin exchanges.The net alongshore transport of this water mass between the hydrographic section and the continental slope reverses to a southward direction from 13S to 27S, probably in relation with an eastward shift of the equatorward near-bottom boundary current at these latitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.