The seismic response of a single-story steel building frame with a smart base isolation system is evaluated. The isolation system consists of sliding bearings combined with an adaptive fluid damper. The damping capacity of the fluid damper can be modulated in real time based on feedback from the earthquake ground motion and superstructure response. The adaptive capabilities of the fluid damper enable the isolation system displacement to be controlled while simultaneously limiting the interstory drift response of the superstructure. This paper concentrates on the development of analytical models of the smart isolation system and control algorithms for operation of the system. In general, the results from numerical simulations demonstrate that, for disparate earthquake ground motions, the smart isolation system is capable of simultaneously limiting both the response of the isolation system and the superstructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.