Breakdown of triple-helical interstitial collagens is essential in embryonic development, organ morphogenesis and tissue remodelling and repair. Aberrant collagenolysis may result in diseases such as arthritis, cancer, atherosclerosis, aneurysm and fibrosis. In vertebrates, it is initiated by collagenases belonging to the matrix metalloproteinase (MMP) family. The three-dimensional structure of a prototypic collagenase, MMP-1, indicates that the substrate-binding site of the enzyme is too narrow to accommodate triple-helical collagen. Here we report that collagenases bind and locally unwind the triple-helical structure before hydrolyzing the peptide bonds. Mutation of the catalytically essential residue Glu200 of MMP-1 to Ala resulted in a catalytically inactive enzyme, but in its presence noncollagenolytic proteinases digested collagen into typical 3/4 and 1/4 fragments, indicating that the MMP-1(E200A) mutant unwinds the triple-helical collagen. The study also shows that MMP-1 preferentially interacts with the alpha2(I) chain of type I collagen and cleaves the three alpha chains in succession. Our results throw light on the basic mechanisms that control a wide range of biological and pathological processes associated with tissue remodelling.
Surfaces of the 173 residue catalytic domain of human matrix metalloproteinase 3 (MMP-3(DeltaC)) affected by binding of the N-terminal, 126 residue inhibitory domain of human TIMP-1 (N-TIMP-1) have been investigated using an amide-directed, NMR-based approach. The interface was mapped by a novel method that compares amide proton line broadening by paramagnetic Gd-EDTA in the presence and absence of the binding partner. The results are consistent with the X-ray model of the complex of MMP-3(DeltaC) with TIMP-1 (Gomis-Rüth et al. (1997) Nature 389, 77-81). Residues Tyr155, Asn162, Val163, Leu164, His166, Ala167, Ala169, and Phe210 of MMP-3(DeltaC) are protected from broadening by the Gd-EDTA probe by binding to N-TIMP-1. N-TIMP-1-induced exposure of backbone amides of Asp238, Asn240, Gly241, and Ser244 of helix C of MMP-3(DeltaC) to Gd-EDTA confirms that the displacement of the N-terminus of MMP-3(DeltaC) occurs not only in the crystal but also in solution. These results validate comparative paramagnetic surface probing as a means of mapping protein-protein interfaces. Novel N-TIMP-1-dependent changes in hydrogen bonding near the active site of MMP-3(DeltaC) are reported. N-TIMP-1 binding causes the amide of Tyr223 of MMP-3(DeltaC) bound by N-TIMP-1 to exchange with water rapidly, implying a lack of the hydrogen bond observed in the crystal structure. The backbone amide proton of Asn162 becomes protected from rapid exchange upon forming a complex with N-TIMP-1 and could form a hydrogen bond to N-TIMP-1. N-TIMP-1 binding dramatically increases the rate of amide hydrogen exchange of Asp177 of the fifth beta strand of MMP-3(DeltaC), disrupting its otherwise stable hydrogen bond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.