-This paper describes a turnout without movable parts for magnetically levitated vehicles with hybrid magnets, which have been studied by the authors in place of streetcars. Their low construction cost and low maintenance is key to their practical use. Magnetic levitation systems using forces of attraction can generate guidance force automatically, but the damping force against lateral motion is negligible. However, the lateral damping characteristic was improved by using divided iron type magnets and rails. Using this turnout without movable parts will facilitate smooth direction switching.
This paper reports the experimental results of the load variation characteristics of a magnetically levitated vehicle with hybrid magnets, which we studied in place of street cars and conveyor systems. Magnetically levitated systems have the following advantages: no bearings, no wheels, no noise, no air pollution and low maintenance. We propose new constructive electromagnets and magnetic rails. The magnetically levitated part must be cordless and the power source has involve Ni-MH AA size rechargeable batteries. As a experimental result, the number of dry cell batteries is increased with increasing load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.