2. Autoimmune diseases / syndromes potentially associated with Covid-19 described so far It has been suggested that the shared pathogenetic mechanisms and clinical-radiological aspects between the hyper-inflammatory diseases and Covid-19 may suggest that SARS-CoV-2 could act as a triggering factor for the development of a rapid autoimmune and/or
Metabolic diseases are associated with an increased risk of severe COVID-19 and conversely, new-onset hyperglycemia and complications of preexisting diabetes have been observed in COVID-19 patients. Here, we performed a comprehensive analysis of pancreatic autopsy tissue from COVID-19 patients using immunofluorescence, immunohistochemistry, RNA scope and electron microscopy and detected SARS-CoV-2 viral infiltration of beta-cells in all patients. Using SARS-CoV-2 pseudoviruses, we confirmed that isolated human islet cells are permissive to infection. In eleven COVID-19 patients, we examined the expression of ACE2, TMPRSS and other receptors and factors, such as DPP4, HMBG1 and NRP1, that might facilitate virus entry. Whereas 70% of the COVID-19 patients expressed ACE2 in the vasculature, only 30% displayed ACE2-expression in beta-cells. Even in the absence of manifest new-onset diabetes, necroptotic cell death, immune cell infiltration and SARS-CoV-2 viral infection of pancreatic beta-cells may contribute to varying degrees of metabolic dysregulation in patients with COVID-19.
The development of biocompatible composite materials is in high demand in many fields such as biomedicine, bioengineering, and biotechnology. In this study, two series of poly (D,L-lactide) and poly (ε-caprolactone)-based films filled with neat and modified with poly (glutamic acid) (PGlu) nanocrystalline cellulose (NCC) were prepared. An analysis of scanning electron and atomic force microscopies’ results shows that the modification of NCC with poly (glutamic acid) favored the better distribution of the nanofiller in the polymer matrix. Investigating the ability of the developed materials to attract and retain calcium ions led to the conclusion that composites containing NCC modified with PGlu induced better mineralization from model solutions than composites containing neat NCC. Moreover, compared to unmodified NCC, functionalization with PGlu improved the mechanical properties of composite films. The subcutaneous implantation of these composite materials into the backs of rats and the further histological investigation of neighboring tissues revealed the better biocompatibility of polyester materials filled with NCC–PGlu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.