Synthesis and characterization of polyester nanocomposites was conducted in order to fabricate hybrid composite materials of polyester/montmorillonite (MMT). Polyester based polymeric nanocomposite materials were synthesized by incorporating MMT nanoclay to produce polyester/MMT hybrid materials. Successful efforts were made to fabricate hybrid nanocomposite materials based on matrix (polyester based) and reinforcement (organoclay) through sonication at 6 and 12 hours. Synthesized nanocomposite polymers (polyester/MMT) showed different properties when compared to the properties of MMT and polyester, which confirmed the successful fabrication of the desired material. The finest incorporation of polyester with MMT was verified by UV-Visible spectrophotometer, Fourier tranform-infrared (FTIR) and scanning electron microscopy (SEM). The disappearance of the Si-O characteristic peak was observed in the FTIR spectrum justifying the fabrication of the desired composite materials. Colored SEM images were used to confirm the fine homogenous distribution of organoclay. Black SEM images showed the matrix and reinforcement together. SEM, FTIR and UV-Visible spectroscopic techniques were used to analyze polyester based nanocomposite materials and organoclay was found randomly distributed in the polymeric matrix whereas on the surface was observed to be mostly uniform.
Abstract—Polystyrene (PS) and polyacrylic acid (PAA) are organic and synthetic polymers. Generally, a composite needs a matrix and reinforcement. Montmorillonite (MMT) is used as reinforcement to form a hybrid matrix by ultra-sonication. Block polymers of PS and PAA were first synthesized and then hybrid nanocomposite material of synthesized block polymeric matrix was fabricated by incorporating organoclay as reinforcement through 6 and 12 hours of ultra-sonication. The characterizations of the hybrid nanocomposite material were done by UV-visible and infrared (IR) spectroscopy, which confirm the successful synthesis of PS and PAA block polymer. The UV-visible spectroscopic measurements revealed that hybrid composite material is different from PS-block-PAA and that absorbance increases on increasing concentration. After successful ultra-sonication the hybrid composite is analyzed through scan electron microscopy (SEM) regarding surface morphology, distribution, uniformity, porosity, matrix compatibility, and matrix reinforcements. Sonication (for 6 hours) demonstrates a heterogeneous porous surface and an increase in roughness and porosity of surface morphology at different optical zooms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.