Road surface monitoring more specifically crack detection on the surface of the road pavement is a complicated task which is found vital due to critical nature of roads as elements of transportation infrastructure. Cracks on the road pavement is detectable using remotely sensed imagery or car mounted platforms. UAV’s are also considered as useful tools for acquiring reliable information about the pavement of the road. In This paper, an automatic method for crack detection on the road pavement is proposed using acquired videos from UAV platform. Selecting key frames and generating Ortho-image, violating non road regions in the scene are removed. Then through an edge based approach hypothesis crack elements are extracted. Afterwards, through SVM based classification true cracks are detected. Developing the proposed method, the generated results show 75% accuracy in crack detection while less than 10% of cracks are omitted.
ABSTRACT:Detecting and tracking objects in video has been as a research area of interest in the field of image processing and computer vision. This paper evaluates the performance of a novel method for object detection algorithm in video sequences. This process helps us to know the advantage of this method which is being used. The proposed framework compares the correct and wrong detection percentage of this algorithm. This method was evaluated with the collected data in the field of urban transport which include car and pedestrian in fixed camera situation. The results show that the accuracy of the algorithm will decreases because of image resolution reduction.
ABSTRACT:Automatic car detection and recognition from aerial and satellite images is mostly practiced for the purpose of easy and fast traffic monitoring in cities and rural areas where direct approaches are proved to be costly and inefficient. Towards the goal of automatic car detection and in parallel with many other published solutions, in this paper, morphological operators and specifically Geodesic dilation are studied and applied on GeoEye-1 images to extract car items in accordance with available vector maps. The results of Geodesic dilation are then segmented and labeled to generate primitive car items to be introduced to a fuzzy decision making system, to be verified. The verification is performed inspecting major and minor axes of each region and the orientations of the cars with respect to the road direction. The proposed method is implemented and tested using GeoEye-1 pansharpen imagery. Generating the results it is observed that the proposed method is successful according to overall accuracy of 83%. It is also concluded that the results are sensitive to the quality of available vector map and to overcome the shortcomings of this method, it is recommended to consider spectral information in the process of hypothesis verification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.