The corrosion inhibition effect of N-(4-((4-Benzhydryl piperazin-1-yl) methyl Carbamoyl) Phenyl) Furan-2-Carboxamide (BFC) on brass in 1M HCl has been investigated using weight loss method, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The result reveals that BFC acts as a mixed type corrosion inhibitor with more pronounced effect on anodic domain and the inhibition efficiency of BFC increases with increase in temperature ranges from 30 ∘ C to 60 ∘ C. AC impedance implies that R ct value of BFC increases with increase in concentration. CV indicates that the addition of inhibitor controls the oxidation of the copper on the brass metal. The structural confirmation of BFC was carried out by the spectral studies like FT-IR, 1 H NMR, 13 C NMR, and the molecular weight was confirmed by LC-MS. Surface characterization of brass with BFC was analysed using scanning electron microscope (SEM). Quantum chemical parameter was used to calculate the electronic properties of BFC in order to confirm the correlation between the inhibitor effect and molecular structure of BFC. BFC has more negative charge on nitrogen and oxygen atom, which facilitates the adsorption of BFC on the surface of brass.
Abstract. The activated carbon prepared from the bark of Ocimum Tenuiflorum reduces the amount of dissolved oxygen (DO) present in distilled water, which in turn reduces the rate of corrosion. The effects of DO, temperature and pH on the rate of mild steel corrosion were discussed. The inhibition efficiency of corrosion on mild steel was estimated by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The inhibition efficiency increases with increase in temperature, pH and the mass of activated carbon. The adsorption of activated carbon follows Langmuir adsorption isotherm. The surface morphology of activated carbon was analysed by FT-IR and SEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.