Organic radicals are versatile synthetic intermediates that provide reactivities and selectivities complementary to ionic species. Despite its long history, electrochemically driven radical reactions remain limited in scope. In the past few years, there have been dramatic increase in research activity in organic electrochemistry. We have been developing electrochemical and electrophotocatalytic methods for the generation and synthetic utilization of organic radicals. In our studies, various radical species such as alkene and arene radical cations and carbon‐ and heteroatom‐centered radicals are generated from readily available precursors through direct electrolysis, molecular electrocatalysis or molecular electrophotocatalysis. These radical species undergo various inter‐ and intramolecular oxidative transformations to rapidly increase molecular complexity. The simultaneous occurrence of anodic oxidation and cathodic proton reduction allows the oxidative reactions to proceed through H2 evolution without external chemical oxidants.
A polypyridyl monoruthenium complex with a dangling coordination site shows dual fluorescence/phosphorescence emissions at room temperature. The emission properties can be modulated by multiple stimuli including solvents, O, and metal ions.
Nucleic acids and carbohydrates are essential biomolecules involved in numerous biological and pathological processes. Development of multifunctional building blocks based on nucleosides and sugars is in high demand for the generation of novel oligonucleotide mimics and glycoconjugates for biomedical applications. Recently, aminooxyl-functionalized compounds have attracted increasing research interest because of their easy derivatization through oxime ligation or N-oxyamide formation reactions. Various biological applications have been reported for O-amino carbohydrate- and nucleoside-derived compounds. Here, we report our efforts in the design and synthesis of glyco-, glycosyl, nucleoside- and nucleo-aminooxy acid derivatives from readily available sugars and amino acids, and their use for the generation of N-oxyamide-linked oligosaccharides, glycopeptides, glycolipids, oligonucleosides and nucleopeptides as novel glycoconjugates or oligonucleotide mimics. Delicate and key points in the synthesis will be emphasized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.