The removal of nitrogen (N) in grain cereal and canola crops in Australia exceeds 0.3 million t N/year and is increasing with improvements in average crop yields. Although N fertiliser applications to cereals are also rising, N2-fixing legumes still play a pivotal role through inputs of biologically fixed N in crop and pasture systems. This review collates Australian data on the effects of grain legume N2 fixation, the net N balance of legume cropping, summarises trends in the soil N balance in grain legume–cereal rotations, and evaluates the direct contribution of grain legume stubble and root N to wheat production in southern Australia. The net effect of grain legume N2 fixation on the soil N balance, i.e. the difference between fixed N and N harvested in legume grain (Nadd) ranges widely, viz. lupin –29–247 kg N/ha (mean 80), pea –46–181 kg N/ha (mean 40), chickpea –67–102 kg N/ha (mean 6), and faba bean 8–271 kg N/ha (mean 113). Nadd is found to be related to the amount (Nfix) and proportion (Pfix) of crop N derived from N2 fixation, but not to legume grain yield (GY). When Nfix exceeded 30 (lupin), 39 (pea) and 49 (chickpea) kg N/ha the N balance was frequently positive, averaging 0.60 kg N/kg of N fixed. Since Nfix increased with shoot dry matter (SDM) (21 kg N fixed/t SDM; pea and lupin) and Pfix (pea, lupin and chickpea), increases in SDM and Pfix usually increased the legume’s effect on soil N balance. Additive effects of SDM, Pfix and GY explained most (R2 = 0.87) of the variation in Nadd. Using crop-specific models based on these parameters the average effects of grain legumes on soil N balance across Australia were estimated to be 88 (lupin), 44 (pea) and 18 (chickpea) kg N/ha. Values of Nadd for the combined legumes were 47 kg N/ha in south-eastern Australia and 90 kg N/ha in south-western Australia. The average net N input from lupin crops was estimated to increase from 61 to 79 kg N/ha as annual rainfall rose from 445 to 627 mm across 3 shires in the south-east. The comparative average input from pea was 37 to 47 kg N/ha with least input in the higher rainfall shires. When the effects of legumes on soil N balance in south-eastern Australia were compared with average amounts of N removed in wheat grain, pea–wheat (1:1) sequences were considered less sustainable for N than lupin–wheat (1:1) sequences, while in south-western Australia the latter were considered sustainable. Nitrogen mineralised from lupin residues was estimated to contribute 40% of the N in the average grain yield of a following wheat crop, and that from pea residues, 15–30%; respectively, about 25 and 15 kg N/ha. Therefore, it was concluded that the majority of wheat N must be obtained from pre-existing soil sources. As the amounts above represented only 25–35% of the total N added to soil by grain legumes, the residual amount of N in legume residues is likely to be important in sustaining those pre-existing soil sources of N.
N2 fixation and its potential contribution to increasing soil total N were estimated in field-grown crops of lupin and pea in 21 trials at 10 locations in New South Wales and Victoria, during 1984 to 1987. Chickpea, faba bean and annual medic were included at some sites. Across experiments there were differences in annual rainfall (267 to 646 mm), soil N (0.02 to 0.20%), soil pH (CaCl2,4.3 to 8.0) and sowing date (24 April to 16 June). Most experiments were conducted on acidic (pH < 4.8) red-earth, the others on grey-cracking clay or sandy soil, both of higher pH The differing sites, seasons, and sowing time contributed to variation in legume biomass (2.02 to 14.33 t/ha) and total N (45 to 297 kg N/ha), and the amount of N harvested with grain (8 to 153 kg N/ha), which were related.Lupin fixed an average of 65% of total crop N, and pea 61%, but there was considerable variation about these averages (20 to 97%). Significant differences in % N2 fixation between legumes within sites were few. The amount of N2 fixed averaged 98.5 kg N/ha by lupin and 80.5 kg N/ha by pea, varying 26 to 288 kg N/ha and 16 to 177 kg N/ha, respectively. Variation in proportional and total N2 fixation was associated with biomass, soil mineral N, and sowing date. N2 fixation increased with more biomass and declined with higher soil mineral N, and later sowing (lupin). Each additional tonne of dry matter increased fixed N by c. 20 kg N/ha. Differences in amounts of fixed N between legumes within sites were due primarily to biomass differences.N2fixed by lupin contributed an average of 38.2 kg N/ha to soil N, and by pea, 17.9 kg N/ha. The contribution was variable, -41 to 135 kg N/ha (lupin) and -32 to 96 kg N/ha (pea), and correlated with proportional and total N2 fixation. Positive increase to soil total N occurred when lupin fixed at least 50% of its crop N, and pea 65%. This occurred in most crops. Legumes frequently used less of the available soil N than cereals.
At 15 sites in the cereal belt of New South Wales and Victoria, wheat after lupin or pea produced more biomass and had a greater nitrogen (N) content than wheat after wheat or barley; on average these crops assimilated 36 kg N/ha more. The improved wheat yield after lupin averaged 0 . 9 t/ha and after pea 0.7 t/ha, increases of 44 and 32% respectively. The responses were variable with site, year and legume. Soil available N was increased by both lupin and pea and the levels of surface inorganic N measured at the maturity of first year crops was often related to N in wheat grown in the following year. Of two possible sources of additional N for wheat after legumes, namely mineral N conserved in soil by lupin or pea (up to 60 kg N/ha) and the total N added in the residues of these legumes (up to 152 kg N/ha), both were considered significant to the growth of a following wheat crop. Their relative contribution to explaining variance in wheat N is analysed, and it is suggested wheat may acquire up to 40 kg N/ha from legume stubbles. Non-legume break crops also increased subsequent wheat yield but this effect was not as great as the combined effect of added N and disease break attained with crop legumes.
Differences in soil organic carbon (C), total nitrogen (N), and pH resulting from 14 and 15 years of different tillage, stubble, and fertiliser N management practices were measured for a red-brown earth at Condobolin in western New South Wales. The 5 main treatments comprised stubble burning or retention in factorial combination with cultivation and direct drilling, and stubble incorporation combined with cultivation. Two rates of N fertiliser (0 and 40 or 50 kg/ha) were applied annually, and wheat was grown each year. There were no significant differences between tillage and stubble treatments for soil organic C, total N, or pH. Fertiliser N application caused small but significant increases in organic C and total N but decreased the pH of the surface 2.5 cm of soil by 0.4-0.5 units compared with the nil fertiliser rate. The study indicates that direct drilling and stubble retention with continuous wheat have had little long-term effect on soil organic C and total N in this low rainfall environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.