Molluscs form their shells out of CaCO 3 and a matrix of biomacromolecules. Understanding the role of matrices may shed some light on the mechanism of biomineralization. Here, a 1401-bp full-length cDNA sequence encoding a novel matrix protein was cloned from the mantle of the bivalve oyster, Pinctada fucata. The deduced protein (Prisilkin-39), which has a molecular mass of 39.3 kDa and an isoelectric point of 8.83, was fully characterized, and its role in biomineralization was demonstrated using both in vivo and in vitro crystal growth assays. Prisilkin-39 is a highly repetitive protein with an unusual composition of Gly, Tyr, and Ser residues. Expression of Prisilkin-39 was localized to columnar epithelial cells of the mantle edge, corresponding to the calcitic prismatic layer formation. Immunostaining in situ and immunodetection in vitro revealed the presence of a characteristic pattern of Prisilkin-39 in the organic sheet and in sheaths around the prisms. Prisilkin-39 binds tightly with chitin, an insoluble polysaccharide that forms the highly structured framework of the shell. Antibody injection in vivo resulted in dramatic morphological deformities in the inner shell surface structure, where large amounts of CaCO 3 were deposited in an uncontrolled manner. Moreover, Prisilkin-39 strictly prohibited the precipitation of aragonite in vitro. Taken together, Prisilkin-39 is the first protein shown to have dual function, involved both in the chitinous framework building and in crystal growth regulation during the prismatic layer mineralization. These observations may extend our view on the rare group of basic matrices and their functions during elaboration of the molluscan shell.
A novel nonacidic matrix protein from pearl oyster nacre has been purified by cation-exchange chromatography. It was designated N40 for the nacreous protein of approximately 40 kDa. On the basis of the extraction method (with Tris-buffered Milli-Q water) and amino acid compositions (Gly- and Ala-rich), N40 was inferred to be a conventional "insoluble matrix protein". Crystallization experiments showed that N40 could facilitate the nucleation of aragonite drastically. So far, among the macromolecules that have been purified from the shell, N40 is an exclusive protein that can nucleate aragonite by itself, without the need for adsorption to a substrate. Thus, the present study has proposed the possibility that the nonacidic shell protein (maybe a conventional "insoluble framework protein") can also directly participate in aragonite nucleation and even act as a nucleation site. It is a valuable supplement to the classic biomineralization theory, in which the soluble acidic proteins of the shell are generally believed to function as a nucleation site.
In this study, we established and characterized a long-term primary mantle tissue culture from the marine pearl oyster Pinctada fucata for in vitro investigation of nacre biomineralization. In this culture system, the viability of mantle tissue cells lasted up to 2 months. The tissue cells were demonstrated to express nacre matrix proteins by RT-PCR, and a soluble shell matrix protein, nacrein, was detected in the culture medium by Western blot analysis. On the other hand, 15 days after initiating culture, a large amount of calcium deposits with major elements, including calcium, carbon, and oxygen, were generated in the mantle explants and cell outgrowth area. The quantity and size of calcium deposits increased with the prolonged cultivation, and their location and nanogranular structure suggested their biogenic origin. These calcium deposits specifically appeared in mantle tissue cultures, but not in heart tissue cultures. Taken together, these results demonstrate that the mantle tissue culture functions similarly to mantle cells in vivo. This study provides a reliable approach for the further investigation on nacre biomineralization at the cellular level.
Ocean acidification (OA) can shift the ecological balance between interacting organisms. In this study, we have used a model system to illustrate the interaction between a calcifying host organism, the blue mussel Mytilus edulis and a common bivalve bacterial pathogen, Vibrio tubiashii, with organisms being exposed to a level of acidification projected to occur by the end of the 21st century. OA exposures of the mussels were carried out in relative long-term (4 months) and short-term (4 days) experiments. We found no effect of OA on the culturability of V. tubiashii, in broth or in seawater. OA inhibited mussel shell growth and impaired crystalline shell structures but did not appear to affect mussel immune parameters (i.e haemocyte counts and phagocytotic capacity). Despite no evident impact on host immunity or growth and virulence of the pathogen, V. tubiashii was clearly more successful in infecting mussels exposed to long-term OA compared to those maintained under ambient conditions. Moreover, OA exposed V. tubiashii increased their viability when exposed to haemocytes of OA-treated mussel. Our findings suggest that even though host organisms may have the capacity to cope with periods of OA, these conditions may alter the outcome of host-pathogen interactions, favouring the success of the latter.
Leptin (Lep) is an anorexigenic hormone and regulates appetite-related neuropeptides in mammals. A number of neuropeptides have also been linked to appetite regulation in teleost fish, but Lep signaling activation and effects on appetite-regulating neurons are poorly elucidated in early vertebrates. This study uses cellular, tissue and organismal approaches to elucidate the acute, central Lep action in rainbow trout. The results demonstrate that Lep activates phosphorylation of protein kinase B (Akt) and signal transducer and activator of transcription 3 in rainbow trout hypothalamus-derived cells, and that the phosphatidylinositol-3-kinase (Pi3k) inhibitor LY294002 can suppress the Lep-induced Akt phosphorylation. Intracerebroventricular (ICV) Lep administration strongly suppresses food intake at the doses of 0.05 and 0.5 µg Lep fish −1 . At low dose, Lep stimulates hypothalamic transcription of anorexigenic cocaine-and amphetamineregulated transcript (Cart) and orexigenic neuropeptide Y. At high dose, Lep stimulates hypothalamic transcription of anorexigenic proopiomelanocortin (Pomc) A1, A2, and B, while coinjection with LY294002 reverses this upregulation. The data suggest that the anorexigenic action of Lep in rainbow trout is mediated through stimulation of the anorexigenic neuropeptides Pomc and Cart. Furthermore, ICV Lep treatment increases phosphor-Akt-immunoreactive cells in the nucleus lateralis tuberis, periventricular zone along infundibulum, and lateral recess surrounded by nucleus anterior tuberis, while LY294002 inhibits this effect. Lep receptor-immunoreactive cells are also predominant in these regions. These results demonstrate that Lep activates the Pi3k-Akt pathway in the lateral tuberal hypothalamus of rainbow trout for acute appetite regulation, indicating the conservation of anorexigenic Lep action in the mediobasal hypothalamus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.