With the continuous emergence of various advanced packaging technologies such as copper interconnection and 3-D packaging technology, it is essential to efficiently and accurately investigate the thermal analysis of high-performance, high-power and complicated electronic devices to better design heat dissipation structures. However, multiscale transient thermal analysis of complex electronic devices by existing numerical methods is still a challenge. In this work, the 3-D domain decomposition method (DDM) with the adaptive time step for the transient thermal analysis of integrated circuits (ICs) is proposed to tackle this problem. By flexible multiscale mesh generation and automatically time step changes based on posteriori errors, the new method significantly improves computational efficiency. Some illustrative numerical examples are presented to verify the accuracy and efficiency of the proposed method by considering 3-D transient heat transfer with thermal conduction, natural convection and radiation boundaries.INDEX TERMS Thermal analysis, integrated circuits (ICs), domain decomposition method (DDM), adaptive time step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.