Face attribute classification (FAC) has received considerable attention due to its excellent application value in bio‐metric verification and face retrieval. Current FAC methods suffer two typical challenges: complex inter‐attribute correlations and imbalanced learning. Aims at the challenges, presents an end‐to‐end FAC framework with integrated use of multiple strategies, which consists of a convolutional neural network (CNN) and a graph convolutional network (GCN). The GCN is used to model the semantic correlations among attributes and capture inter‐dependency among them. The correlation information learnt via the GCN is used to guide the learning of the inter‐dependent classification features of the FAC network. An adaptive thresholding strategy and a boosting scheme are adopted to alleviate the effect of the class‐imbalance. To deal with the task imbalance problem, a new dynamic weighting scheme is proposed to update the weight of each attribute classification task in the training process. We apply four evaluation metrics to evaluate the proposed method. Experimental results show all the proposed strategies are effective, and our approach outperforms state‐of‐the‐art FAC methods on two challenging datasets CelebA and LFWA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.