Three perylene‐containing conjugated microporous polymers (PrCMPs) are synthesized via Suzuki–Miyaura cross‐coupling reaction from perylene with four polymerizable functional groups and a range of different substituted benzene derivatives. The pore property and bandgap of the resulting PrCMPs can be tuned by changing the comonomer of benzene with different substituted groups and positions. The photocatalytic performances of the polymers are highly dependent on the surface area, geometry, and bandgap of the PrCMPs. It was found that the 1,2,4,5‐linked polymer of PrCMP‐3 shows the highest hydrogen evolution rate (HER) of 12.1 µmol h−1 under UV–vis light irradiation among the three polymers because of its high surface area, broad light absorption, and suitable bandgap. PrCMP‐3 also exhibits good photocatalytic stability for prolonged hydrogen production reaction. This result demonstrates that the crucial role of the linkage geometry offers a general principle for the rational design of conjugated microporous polymer photocatalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.